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Abstract 

Industrial wastewater contains a variety of contaminants like salts, organic carbon, and heavy metals. 

Among the heavy metals, cadmium (Cd) and lead (Pb) are considered highly toxic even at low concentration. 

These metals could enter the food chain through a process of phytoassimilation, hence, lethal for living beings. 

The present study aimed to investigate Cd and Pb phytoextraction in four grass species viz. Dhab (Desmostachya 

bipinnata), Sporobolus (Sporobolus arabicus), Kallar (Leptochloa fusca) and Para grass (Brachiaria mutica) 

from industrial wastewater. The grasses were grown hydroponically in plastic pots in industrial wastewater as 

growth medium under greenhouse conditions. The experiment trial was arranged following completely 

randomized design (CRD) with three replicates. Results showed that B. mutica had maximum shoot metal content 

(Pb = 21, Cd = 0.66 mg kg-1 dry matter), shoot metal uptake (Pb = 201.8, Cd = 6.39 µg plant-1), translocation 

factor (Pb = 0.73, Cd = 0.55), shoot dry matter (28.8 g pot-1), and root dry matter (4.2 g pot-1). Root Pb 

concentration was highest in B. mutica followed by D. bipinnata and L. fusca. Whereas S. arabicus showed 

depressed growth, minimum shoot metal accumulation and uptake potential. Thereby among the tested grass 

species B. mutica could be suitable option to remediate industrial wastewater contaminated with moderate levels 

of Pb and Cd. 
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Introduction 

Heavy metals usually indicate environmentally bad 

metals which have higher atomic number, or atomic weight, 

density (3.5-7.0 g cm-3 or above), properties of metallic 

substance at room temperature, and are extremely toxic for 

living organisms even at lower concentration (Duffus, 2002; 

Mitra, 2019). These metals include lead (Pb), cadmium 

(Cd), chromium, nickel, arsenic and mercury which are 

well-known environmental contaminants due to their toxic 

nature, bioaccumulation and persistence in the environment 

(Latif et al., 2019; Ali et al., 2019). Heavy metal 

contamination distresses the environment and food security 

ultimately posing serious health concerns (Rai et al., 2019; 

Mushtaq et al., 2019). With rampant inflation in 

anthropogenic activities, the release of toxic metals into the 

environment is increasing day by day. According to an 

estimate, global annual release of Pb and Cd into the 

environment is 783,000 and 22,000 metric tons, respectively 

(Singh et al, 2003).  Wastewater from different sources 

(domestic, municipal and industries) plays significant role in 

release of heavy metals like Pb and Cd. About 2 million 

tons of sewage sludge and effluents are polluting the 

world’s water per day (Azizullah et al., 2011). Issue is more 

serious in developing countries due to improper treatment of 

domestic, municipal and industrial waste. Such as in India 

24% of wastewater (industry and domestic) is treated, 

whereas in Pakistan only 2% of total sewerage or 

wastewater is treated properly (IWMI, 2003; Minhas and 

Samra, 2004; Majeed et al., 2018). Wastewater released 

from different industries contains a variety of toxic metals 

such as Pb, Cd, chromium and arsenic (Rehman et al., 2018, 

2019; Hussain et al. 2019; Afzal et al. 2019). Use of 

industrial effluents/wastewater for cultivation of crops has 

created the problem of heavy metal contamination in soil 

(Hussain et al., 2019). Moreover, in developing countries, 

like Pakistan, shortage of good quality irrigation water also 

urges the farmers to use wastewater for irrigation purpose 

http://www.duffus.com/jhduffus1940.htm
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(Qadir et al., 2010). Use of contaminated wastewater to 

irrigate crops and vegetables increases the risk of entry of 

toxic metal into our food chain. For example, Ahmad et al. 

(2019) observed Pb and Cd contamination in wheat grain up 

to 0.2 and 1.6 mg kg-1 respectively, due to irrigation with 

wastewater. Hussain et al. (2019) also observed Pb and Cd 

contamination in different vegetables (carrot, radish, and 

spinach) irrigated with wastewater. 

In human beings, heavy metals cause severe health 

problems such as Pb poisoning especially in children and 

kidney disease due to Cd toxicity (WHO, 1997: 

Padmavathiamma and Li, 2007; Rehman et al., 2018). 

Intake of Pb and Cd above their permissible limits could 

leave carcinogenic impacts in human body (Salman et al., 

2019). Cadmium and Pb could easily cause acute and 

chronic risk even at their lower concentrations, causing 

renal damage, headache, hypertension and malformation in 

fetuses (Shi and Chatt, 2014; Zhou et al., 2019). Svetlana et 

al. (2019) observed that higher levels of Pb and Cd caused 

chronic sinusitis in children. In plants, heavy metals retard 

shoot and root growth, reduce mineral uptake (Fe, Cu, Zn, 

Mn), and stimulate the production of reactive oxygen 

species (H2O2, O2-) that damage plasma membrane (Zou et 

al., 2019). Improper management to dispose-off wastewater 

can cause ground and/or drinking water contamination with 

toxic metals, thereby, it is imperative to strictly monitor the 

wastewater management (Hussain et al., 2019; Rehman et 

al., 2019).  

Recently, much consideration has been paid to various 

techniques/ approaches in order to remove toxic metals 

from effluents discharged in to water bodies such as 

membrane filtration, reverse osmosis, ion exchange, 

solvent extraction, absorption/adsorption, precipitation and 

electrochemical treatments (Miretzky et al., 2006; Singh et 

al., 2012; Liu et al., 2018). But these techniques cover 

higher cost, technical expertise and are difficult to apply at 

large scale (Olguin and Sanchez-Galvan, 2012), thereby, 

phytoremediation is a well-suited technique. It is cost 

effective, easy to apply, and is environment friendly 

(Cheng, 2003; Sarwar et al., 2017; Liu et al., 2018). A 

hyperaccumulator to be used to extract water soluble 

heavy metals, should have fast growth, ample root system, 

higher biomass, resistant to higher concentration of metals, 

and retain higher metal concentration (Garbisu and 

Alkorta, 2001; Soda et al., 2012; Rev et al., 2017). In this 

regard, use of different grass species is gaining promising 

importance due to their tolerance to phytotoxicity, hinder 

natural succession of weeds, suitable for grazing, bulk 

biomass, rapid growth and compact root system. Well-

developed root system in grasses triggers 

phytostabilization by retarding metal mobility and 

improves metal uptake and their accumulation in plant 

body hence make them more exploring phytoremediant 

agent as compared to shrubs, herbs, and trees (Ghosh et 

al., 2017). Literature has confirmed the potential of 

different grass species (Cynodon dactylon L, Chrysopogon 

zizanioides, Imperata cylindrical) for the uptake of heavy 

metals like Pb and Cd from wastewater and contaminated 

soil (Pongthornpruek, 2017; Chen et al., 2019; Kiiskila et 

al., 2019; Zheng et al., 2019).  

Table 1: Some salient characteristics of grasses used in the experiment 

Grass species Origin Salient feature  Salt tolerance potential [Root 

zone salinity (EC, dS m-1) 

causing 50% decrease in yield] 

Reference 

Dhab 

(Desmostachya 

bipinnata) 

China, India, 

Pakistan and 

Africa 

C4 perennial grass, 

used as fodder source in 

dry-saline areas 

9.0 NIAB (2007); Gulzar 

et al. (2007); Ahmad 

et al. (2009); Asrar et 

al. (2017) 

Kallar grass 

(Leptochloa 

fusca) 

Australia, now 

well adapted to 

Pakistan and 

India 

C4 perennial grass, 

used as animal fodder 

and reclamation agent 

for saline-sodic soils 

22.0-14.6 Qureshi et al. (1982); 

Ashraf et al. (2012); 

Adabnejad et al. 

(2015) 

Para grass 

(Brachiaria 

mutica) 

African 

countries 

C4 plant, known as 

buffalo grass, used as 

pasture, fodder 

Salt tolerant Ashraf et al. (2012); 

Mohanty and Patra, 

(2012) 

Sporobolus 

(Sporobolus 

arabicus) 

 C4 perennial grass, 

used as desalinization 

tool for saline-sodic 

soils 

21.7 Ashraf et al. (2012); 

Falla et al. (2017); 

Yobi et al. (2017) 
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Therefore, present experiment was conducted to 

investigate the growth response of four different salt tolerant 

grass species in wastewater and to assess the 

phytoextraction potential of four different salt tolerant grass 

species for Pb and Cd from wastewater in order to identify 

suitable grass species for the remediation of contaminated 

wastewater. 

Materials and Methods 

Plant material 

Grass species viz. Kallar grass (Leptochloa fusca), 

Para grass (Brachiaria mutica), Sporobolus (Sporobolus 

arabicus) and Dhab (Desmostachya bipinnata) were 

brought from the Biosaline Research Station Pakka Anna, 

a substation of Nuclear Institute for Agriculture and 

Biology (NIAB), Faisalabad. The silent features of the 

grasses are presented in Table 1. Each grass was grown 

in plastic pots (three plants/cuttings per pot) containing 

gravel and three liters of wastewater which was aerated 

manually by placing pots outside on wooden sticks for 

two hours twice a day (morning and evening). Each grass 

was grown in three independent pots, representing three 

replicates. The pots were placed in the greenhouse of 

NIAB under natural conditions/ photoperiod, with mean 

temperatures of 23-26 °C (night-day) and relative 

humidity of 60-65%. Wastewater was replaced twice a 

week with its fresh counterpart till plants were harvested 

after three months. After harvesting root and shoot 

samples were dried at 70 °C in oven until constant weight 

and dry matter was recorded. 

Table 2: Characteristics of industrial wastewater used in 

the experiment 

Parameter Value Unit  

pH 7.42  

SAR 254  

EC  3.57  dsm-2 

RSC  7  me L-1 

TSS  3390  mg L-1 

CO3
- ND* mg L-1 

HCO3
-  17  mg L-1 

Na+ 570  mg L-1 

K+  56  mg L-1 

Total N 2.372 mg L-1 

NH4-N  0.07  mg L-1 

NO3-N  0.0006  mg L-1 

Phosphorus 0.278 mg L-1 

Organic carbon  42.3  mg L-1 

Ca+Mg  10 me L-1 

Cl-  20  me L-1 

Pb  0.92  mg L-1 

Cd  0.03 mg L-1 
ND*: Not detected 

Water quality analysis 

The wastewater used in this study was collected from 

industrial wastewater collecting system of village ‘Chakaira 

217 R.B.’ Faisalabad, Punjab, Pakistan. The collected 

wastewater was stored in the plastic tanks once and 

analyzed for different quality indicators which are presented 

in Table 2. The pH was measured by pH meter (HI-8520, 

Hanna Instruments, UK), EC and total soluble salts (TSS) 

by conductivity meter (LF-538 WTW, Germany), 

carbonates (CO-3), bicarbonates (HCO-3), chlorides (Cl-), 

calcium (Ca+2) and magnesium (Mg+2) were determined by 

titration method as described by Richards (1954). Sodium 

(Na+) and potassium (K+) were determined by Flame 

Photometer (PFP7-Jenway, UK). Phosphorus was measured 

by Watanabe and Olsen (1965) method, organic carbon by 

Riehm and Ulrich (1954) method. Nitrogen (NH4+-N, NO3--

N, total N) was determined by following Kroon (1993) and 

Kjeldahl method with some modification. Wastewater was 

concentrated in water bath and the organic bound N was 

digested by adding the mixture of conc. H2SO4, K2SO4 and 

Se as catalyst. 

Metal concentration, uptake and translocation 
factor (TF) 

Root and shoot samples were ground and digested 

following the method described by Wolf (1982). After 

digestion, extracts of samples were used to determine Pb 

and Cd concentration by atomic absorption spectrometer 

(AA240FS, Varian, Australia). Shoot metal uptake was 

calculated by multiplying shoot dry matter with shoot metal 

concentration: 

 

Translocation factor (TF) was calculated by following 

formula (Soda et al., 2012): 

 

Statistical analysis  

Statistical differences among different grass species 

were assessed by one-way analysis of variance (ANOVA) at 

p ≤ 0.05 and least significant difference (LSD) test was used 

to separate the significant means of treatments using 

Statistix 8.1. 

 

http://www.efloras.org/florataxon.aspx?flora_id=5&taxon_id=200025171
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Results 

Wastewater characteristics  

Different physicochemical parameters of wastewater 

(Table 2) revealed that wastewater contained significant 

amount of essential plant nutrients (N, P, K, Ca, Mg), organic 

C while high levels of Na+ (570 mg L-1), SAR (254), RSC (7 

mg L-1), and TSS (3390 mg L-1) were recorded. Heavy 

 
Figure 1: Effect of industrial wastewater on shoot and root dry matter yield of various grasses. Data represent the 

means of three replicates. The bars sharing similar letters do not differ significantly at p ≤ 0.05. 

 
Figure 2: Effect of industrial wastewater on shoot and root Pb concentration of various grasses. Data represent the 

means of three replicates. The bars sharing similar letters do not differ significantly at p ≤ 0.05. 

 
Figure 3: Effect of industrial wastewater on shoot and root Cd concentration of various grasses. Data represent the 

means of three replicates. The bars sharing similar letters do not differ significantly at p ≤ 0.05.  
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metals Pb and Cd were found to be 0.92 and 0.03 mg L-1, 

respectively.  

Dry matter yield 

Results regarding shoot dry matter yield are presented 

in Figure 1. B. mutica had maximum shoot dry matter yield 

(28.8 g pot-1) as compared to other grass species, following 

L. fusca (20.6 g per pot) and D. bipinnata (12.6 g pot-1), 

while the S. arabicus showed lowest dry matter yield of 3.4 

g pot-1. Similarly, in case of root dry matter yield (Figure 1), 

application of Chakaira-wastewater significantly affected 

the root dry matter of all grass species at p ≤ 0.05. Root dry 

matter was observed in the sequence of B. mutica > L. fusca 

> D. bipinnata > S. arabicus ranging between 1.1 to 4.21 g 

pot-1. 

Shoot and Root metal concentration 

Being statistically at par with each other, B. mutica and 

L. fusca had more Pb concentration in shoot, i.e. 21.05 and 

17.14 mg kg-1 dry weight, respectively, than D. bipinnata 

and S. arabicus with corresponding values of 9.55 and 8.19 

mg kg-1 dry weight, respectively (Figure 2). Data regarding 

root Pb concentration (Figure 2) revealed that highest root 

Pb concentration was recorded in B. mutica (28.82 mg kg-1 

dry weight) while the lowest was in S. arabicus (8.19 mg 

kg-1 dry weight). Root Pb concentration in and D. bipinnata 

and L. fusca was 23.61 and 20.06 mg kg-1 dry weight, 

respectively. In case of shoot Cd concentration (Figure 3), 

high values were recorded for B. mutica (0.66 mg kg-1 dry 

weight) followed by L. fusca (0.38 mg kg-1 dry weight). The 

S. arabicus and D. bipinnata showed lower shoot Cd 

concentration, 0.23 and 0.27 mg kg-1 dry weight 

 
Figure 4: Effect of industrial wastewater on Pb and Cd shoot uptake of various grasses. Data represent the means 

of three replicates. The bars sharing similar letters do not differ significantly at p ≤ 0.05. 

 
Figure 5: Effect of industrial wastewater on Pb and Cd translocation factor (TF) of various grasses. Data represent 

the means of three replicates. The bars sharing similar letters do not differ significantly at p ≤ 0.05. 
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respectively, with non-significant difference among them. 

However, no significance difference was observed in root 

Cd concentration of different grass species (Figure 3) and it 

ranged from 1.24-1.57 mg kg-1 dry weight.  

Metal uptake and Translocation factor 

Shoot metal uptake varied with different grass species 

and was in the range of 9.4-201.8 and 0.26-6.39 µg plant-1 

for Pb and Cd (Figure 4), respectively. Uptake for both the 

metals by different grass species was in the order B. mutica 

> L. fusca > D. bipinnata > S. arabicus. However, B. mutica 

indicated better efficiency with significant uptake of Pb and 

Cd, 201.8 and 6.39 µg plant-1 respectively, in comparison to 

other grass species. The translocation factor (TF) for Pb and 

Cd did not exceed the unity (Figure 5). B. mutica and L. 

fusca gave higher TF-values for Pb 0.73 and 0.85, 

respectively, compared to other grasses. Moreover, TF did 

not differ significantly for D. bipinnata, L. fusca and S. 

arabicus except for B. mutica which showed highest TF-

value 0.55 (p ≤ 0.05). 

Discussion 

The pollution status is becoming worse especially in 

the developing countries due to modernization, such as 

Pakistan where industries share the major portion in water 

pollution (Sial et al., 2006; Majeed et al., 2018; Kadam et 

al., 2018; Hussain et al., 2018). These industries are 

generating over 435 million gallons of sewage and 

effluents daily (Ijaz et al., 2016). A large quantity of this 

wastewater is discharged in the outer environment, and 

farmers near urban areas are likely to use this water for 

irrigation purpose due to shortage of good quality 

irrigation water. It contains toxic metals i.e. Cd (0.03 mg 

L-1) and Pb (0.92 mg L-1) (Table 2). Amount of Pb present 

in wastewater was above the permissible limit set by 

National Environmental Quality Standards (NEQS), 

Pakistan. Thereby, there is dire need for appropriate 

treatment of wastewater in order to prevent the entry of 

toxic metals into food chain. 

Growth potential of grasses in wastewater showed 

variable influence on shoot and root dry biomass of grass 

species, especially B. mutica indicated good growth which 

might be due to the presence of organic matter and 

inorganic mineral ions like N, P, K, Ca, and Mg in 

wastewater which are necessary for plant growth and 

development (Adrover et al., 2012; Rev et al., 2017). The 

results of present study are consistent to the findings that 

use of urban wastewater as irrigation enhanced the 

photosynthesis, growth and dry matter yield of chickpea 

(Tak et al., 2013). S. arabicus showed least growth 

potential compared to other grass species which might be 

due to the suppressive effects of toxic elements (Cd, Pb) 

present in the wastewater (Nair et al., 2008; Adrover et al., 

2012). These toxic metals may reduce plant growth by 

inhibiting photosynthesis, respiration and enzymatic 

activity, decreasing chlorophyll and nitrogen contents, 

increasing the production of reactive oxygen species, 

disequilibrium in nutrients, water and hormonal balance of 

plants (Li et al., 2012; Lou et al., 2017; Akhtar et al., 

2018). It was observed that grass species showed variable 

response regarding accumulation of Pb and Cd in roots and 

shoots in wastewater growth medium. However, the Pb 

and Cd concentration in roots of all grass species was 

more than shoot. This might be due to negative charges 

present on root surface capable to bind the metal cations 

and decrease root to shoot transport (Zhivotovsky et al., 

2011). These results are in line with the findings of 

Roongtanakiat et al. (2007) who found more concentration 

of heavy metals (Pb, Mn, Cu, Fe, Zn) in roots as compared 

to shoot of Vetiveria zizanioides growing in industrial 

wastewater. Moreover, Silva et al. (2016) also observed 

high Cd concentration in roots compared to above ground 

parts of forage grasses. 

Results regarding shoot metal concentration and shoot 

metal uptake showed that B. mutica had maximum metal 

concentration (Pb 21 and Cd 0.66 mg kg-1 dry matter) and 

uptake (Pb 201.8 and Cd 6.4 µg plant-1) followed by L. 

fusca. Good response of B. mutica for uptake and 

accumulation of heavy metals (Pb, Cd) could be due to 

different genetically controlled mechanisms responsible 

for varying uptake and transportation potential of metal 

cations from soil/ solution to aerial parts of the plant such 

as composition and quantity of organic acids released 

through roots to mobilize/ chelate the metal cations (Hall, 

2002; Sarwar et al., 2010; Najafi et al., 2015; Alves et al., 

2016). These results are in agreement with our recent 

study in which B. mutica showed good potential regarding 

the shoot metal concentration (Cd>150 and Pb>1000 mg 

kg-1 dry matter) and shoot metal uptake (Pb 6000 and Cd 

1200 µg pot-1) under contaminated nutrient solution 

hydroponic culture (Ullah et al., 2019). Mohanty and Patra 

(2012) observed significant Cr uptake (i.e. total 

accumulation rate 8.2 mg kg-1 day-1 and transportation 

index 6.16) with luxuriant growth and biomass, thereby, 

suggesting para grass an excellent plant for remediation of 

heavy metal contaminated wastewater and soil. The TF 

value refers to the efficiency of plant to transport the metal 

from root to above ground parts i.e. shoot, leaves. In our 

experiment, for both metals all grass species showed TF 

value less than one which shows the lower rate of metal 

transfer from root to shoot. Similar results were observed 

by Aran et al. (2017) who observed TF values less than 
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one for different heavy metals (Pb, Cr, Ni, Zn) in L. 

laevigatum growing under wastewater. 

Conclusion 

It can be concluded on the basis of current findings, 

among the test grass species that B. mutica showed better 

efficacy regarding metal transfer, accumulation, and uptake 

with luxuriant growth or biomass. Thereby, B. mutica could 

be a better option to filter out the toxic metals from 

wastewater. 
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