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Abstract 

Just like animals and human beings, plants also accommodate a countless number of microorganisms as hosts. 

Microorganisms enjoy this hospitality by developing an interaction with the plants either in a synergistic way 

benefiting each other or in an antagonistic manner damaging their hosts. Such types of mutualistic and pathogenic 

interactions also take place among microbial community. Proteins, metabolites and certain molecular mechanisms 

determine whether the intruder is a symbiotic or pathogenic microorganism. Various bacteria and fungi interact 

symbiotically and play significant role in plant growth promotion. Certain species of fungi, oomycetes, bacteria and 

nematodes are also pathogenic in nature and cause impact on soil and plant. Soil serves as a big substrate for 

microbial community, which are important in a number of ways owing to their role in mineralization, nutrient 

availability and are sources of industrial products such as enzymes, hormones, antibiotics, vitamins etc. This review 

will improve our understanding about relationships between plants and their microbial friends and foes. The 

mechanisms adopted by soil microbes to contribute in the betterment of soil leading towards enhanced plant growth 

as well as pathogenicity caused by these microbes have also been discussed. Recent advances to recognize the 

molecular mechanisms involved in such interactions have also been discussed. Recent advances made in this field 

and the areas needing further research have also been mentioned. 

Keywords: Microbes, interactions, disease, plant, soil, growth 

 

Plant-microbe interactions 

Rhizosphere is a zone surrounding the plant roots 

having maximum microbial activity. Many plant growths 

promoting microorganisms that are associated with the plant 

root system depend on root exudates for their survival 

(Whipps, 1990). Root exudates contain a variety of 

compounds including polysaccharides and proteins. 

Microorganisms residing in the soil environment play a 

major role in ecosystem functioning. Several fungal and 

bacterial species are present in the rhizosphere. These 

microbial species interact with each other and with plants. 

Such interactions may be friendly or hostile as described by 

a broad range of scientific studies (Saharan and Nehra, 

2011; Nadeem et al., 2013; Schikora, 2018; Ding et al., 

2019; Wille et al., 2019). The plant-microbe interactions 

take place above and below ground; however, plant-microbe 

interactions are more complex below the ground than above 

the soil surface (Bais et al., 2004). The manipulation of 

these interactions is not only important for understanding 

the ecological role of microbial population but also for 

sustainable agriculture. 

The interactions among microbial community and plants 

are very complex. The microbial association with plants is not 

only useful for improving plant growth under normal 

condition, but also protects plants from adverse environment 

by promoting plant growth under stress conditions. Microbes 

such as mycorrhizal fungi and rhizobia, which associate with 

plant roots, provide mineral nutrients to plants in exchange of 

carbon required for their growth. A number of bacterial 

strains have been reported that cause significant effect on 

plant growth and development under stressed conditions 

including salinity, drought, heavy metal, temperature and 

pathogen (Belimov et al. 2005; Trivedi and Sa, 2008; Singh 

et al., 2010; Nadeem et al., 2016; Numan et al., 2018). 

Inoculation of BERA71 isolate of Bacillus subtilis increased 

photosynthetic activity and reduced the levels of reactive 

oxygen species (ROS) in chickpea plants grown in saline soil 

conditions (Abd_Allah et al., 2018). Plant growth promoting 

strains of Pseudomonas spp. were considered as drought 

tolerant owing to their withstanding a substrate metric 

potential of -1.0 MPa [30% polyethylene glycol 8000] 

(Chandra et al., 2018). Similarly, mycorrhizae fungi also play 

important role to facilitate plant growth under various kinds 

of stresses by mechanisms like enhancing antioxidant system 

and osmolytes production in addition to supply of nutrients to 

the host plant (Tang et al., 2009; Nadeem et al., 2014; 

Habibzadeh,2015; Quiroga et al., 2019). 
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It is also evident from literature that microbes interact 

negatively with plants and cause negative impacts on plant 

growth. Such negative impacts are due to their pathogenic 

nature that causes onset of various diseases or by the 

production of compounds that are harmful for the plants 

(Xiong and Fuhrmann, 1996; Pamp and Tolker-Nielsen, 

2007; Vacheron et al., 2013). The nature of interaction 

whether it will be friendly, or hostile is determined by the 

type of microbial specie as well as the mechanism of action 

adopted by the microbe. For example, cyanide production 

by some bacteria inhibits plant growth while 

phytohormones production by a variety of bacterial strains 

causes plant growth enhancement (Nadeem et al., 2014).  

The above discussion shows that plant-microbe 

interaction is very complex and better understanding of this 

aspect would be useful for promoting growth and 

development of plants on sustainable basis. The present 

review has been undertaken to insight the interactions 

among microbial community and to further update the 

knowledge about impact of this community on plant growth 

and development. 

Fungi and oomycetes 

Fungi and oomycetes have pathogenic and symbiotic 

relationship with plants. Plant pathogenic fungi are parasitic, 

and more than 10,000 species of fungi are pathogenic to 

plants (Agrios, 2005). Fungi occupy diverse environmental 

niches. Fungi have diverse lifestyle and having saprophytic, 

pathogenic and/or symbiotic interactions and boundaries of 

these interactions are not well defined (Grigoriev, 2013). 

Plant pathogenic fungi 

Most of the fungal strains also live as pathogen and 

cause certain diseases in plants. The study on the 

interactions of plants and phytopathogenic fungi is now 

becoming one of the most important and interesting subject 

of plant sciences. These pathogens may be biotrophic, 

necrotrophic or hemibiotrophic. Biotroph fungi obtain 

nutrients from living tissues through haustoria and 

necrotrophic fungi obtain their nutrients after killing the 

host tissues via enzymes and toxins. While, hemibiotrophic 

fungi follow the both phases i.e. a biotrophic phase followed 

by a necrotrophic stage (Pel and Pieterse, 2013; Lo Presti et 

al., 2015). Owing to their diverse lifestyle they have the 

ability to colonize plant effectively. Pathogenic fungi cause 

detrimental effects on plant physiology. Plant fungal 

pathogens are economically important due to the threats 

they pose to the growth and production of most of the 

economically important crops. Agricultural crops, 

grasslands and forests are losing its economical values due 

to negative impact of pathogenic fungi in these areas. There 

is variability among fungal strains regarding severity of 

pathogenicity. Dean et al. (2012) reported the top ten plant 

pathogens in order of their severity. These include 

Magnaporthe oryzae, Fusarium oxysporum, Puccinia spp., 

Fusarium graminearum, Blumeria graminis, Botrytis 

cinerea, Mycosphaerella graminicola, Colletotrichum spp., 

Ustilago maydis, and Melampsora lini. Annual loss of about 

15% has been estimated due to plant diseases caused by 

fungi (Lo Presti et al., 2015). Some examples of pathogenic 

fungi along with their specific enzymes and host plant are 

highlighted in Table 1.  

Table 1: Plant pathogenic fungi, enzymes and their host 

Fungi Enzymes Hosts References 

Monilinia fructicola Cutinase Stone fruits Lee et al. 2010 

Fusarium solani Cutinase Potato Morid et al., 2009 

Botrytis cinerea Cutinase, Lipase Vegetables, Fruit plants Choquer et al., 2007 

Cryphonectria parasitica Cutinase Chestnut Park and Kim, 2004 

Didymella bryoniae Polygalacturonases Melon Zhang et al., 2014 

Colletotrichum gloeosporioides Pectin lyase, Pectate lyase Avocado Miranda-Gomez et al., 2014 

Aspergillus flavus Pectinase Cotton boll Mellon, 2015 

Botrytis cinerea Endopolygalacturonase Tomato Nakajima and Akutsu, 2014 

Fusarium compactum Cellulolytic, Pectinolytic Broom/rape Babalola et al., 2010 

Heterobasidion annosum Arabinase Conifer  Asiegbu, 2000 

Botrytis cinerea Xylanase Trees, Fruit trees Brito et al., 2006 

Alternaria citri Endopolygalacturonase Citrus Isshiki et al., 2001 

Sclerotium rolfsii Mannanase, Xylanase, 

Endoglucanase 

Potao, Pumpkin, Corn Sachslehner et al., 1998 

Cochliobolus carbonum Xylanase Maize Tonukari et al., 2000 

Rhizopus stolonifer Amylase Wheat, Paddy, Bean Saleem and Ebrahim, 2014 

Aspergillus niger Amylase Wheat, Paddy, Bean Saleem and Ebrahim, 2014 

 

 



Binyamin, Nadeem, Akhtar, Khan and Anjum 

 

129 

Soil Environ. 38(2): 127-150, 2019 

Plant beneficial fungi 

Plants and fungi have diverse relationship which range 

from pathogenic to symbiotic association. Mostly mutualism 

is based on the fact that fungi degrade organic material for 

availability of nutrients that are otherwise inaccessible to 

plants. In rhizosphere, plant and fungi communication at 

molecular level starts as plant secretes amino acids, sugars 

and organic acids, that activate the fungus to colonize the 

plant roots. The most well-known symbiotic relationship 

characterized by the unique morphological growth is called 

mycorrhizae (fungi roots). Mycorrhizae fungi living either in 

or on the plant roots are common in forest trees and are 

associated with more than 90% plant species (Bonfante and 

Genre, 2010; Delavaux et al., 2019). Mycorrhizae also 

develop in other crops like vegetables, fruits, ornamental 

plants, and cereals. Fungi benefit plants in terms of nutrients 

(nitrogen and phosphorus) and water uptake by increasing the 

root absorption surface area and protection from pathogens 

(Ziedan et al., 2011; van der Heijden et al., 2017). In case of 

endomycorrhizae, the roots are similar to normal plant roots 

in shape, size and color, whereas hyphae grow into feeder 

root’s cortical cells and form arbuscules (a specialized 

feeding hyphae) and sometimes vesicles i.e. food storing 

hyphal swelling. In most of cases, endomycorrhizae having 

both arbuscules and vesicles, are called as VAM (Vesicular-

arbuscular mycorrhizae). In returns, fungi take sugar (carbon) 

which plant synthesized via photosynthesis. Genes which 

activate plants’ nitrogen transporters for uptake of nitrogen 

(both as organic and inorganic forms) are also identified in 

ecto- and endo-mycorrhizae during mycorrhization (Lucic et 

al., 2008; Cappellazzo et al., 2008; Guether et al., 2009). 

Plant carbohydrates (mannitol and trehalose) are metabolized 

by ectomycorrhizae, as most plants cannot metabolize these 

carbohydrates. Ectomycorrhizae also produce protease 

enzyme which cause protein degradation from leaf litter. 

Endomycorrhizal fungi absorb nutrients from soil with extra 

radicle hyphae and deliver to plant via branched arbuscule 

(Parniske, 2008). Ammonium transporters are active in 

cortical cells of plants having arbuscular sites (Kobae et al., 

2010). The selected examples regarding positive impacts of 

mycorrhizae on plant growth have been presented in Table 2.  

Table 2: Impact of mycorrhizae on plant growth 

Mycorrhizal fungi Crop Response Reference 

Glomus spp. Helianthus annuus Fungal inoculation enhanced the root 

growth and yield of sunflower 

Adewole et al., 2010 

Hymenoscyphus ericae Vaccinium corymbosum, 

Calluna vulgaris 

Improve the growth, Improve amino 

acid uptake 

Eccher et al., 2009 

Sokolovski et al., 

2002 

Acaulospora scrobiculata Pongamia pinnata Improve seedling growth Jha et al., 2014 

Scutellospora heterogama Passiflora alata Stimulate plant growth and inhibit 

nematode infection 

Anjos et al., 2010 

Scutellospora fulgida Asclepias syriaca Improve biomass, foliar P and trichome 

density 

Vannette and Hunter, 

2013 

Glomus mosseae Solanum lycopersicum Improve growth and resistance against 

bacterial wilt 

Tahat et al., 2012 

Glomus clarum Cucumis sativus Improve yield, P and Zn uptake Ortas, 2010 

Glomus etunicatum Citrus aurantifolia Improve growth via increase in 

chlorophyll contents, photosynthesis rate 

Shahsavar et al., 2016 

Glomus intraradices Zea mays Improve maize seedlings tolerance to 

low temperature stress 

Chen et al., 2014 

Glomus fasciculatum Wedilia chinensis Improved total biomass and nutrition 

uptake 

Nisha and 

Rajeshkumar, 2010 

Scutellospora spp. Zea mays, Glycine max Improve the root and shoot growth  Jeong et al., 2006 

Archaeosporatrappei Plantago lanceolata Tolerance to herbivory in the form of an 

increased growth rate 

Bennett and Bever, 

2007 

Rhizophagus fasciculatus Solanum lycopersicum,  

Capsicum annuum 

Improve fruit yield, biomass, P 

accumulation in shoots 

Padmavathi et al., 

2015 

Rhizophagus clarus Capsicum annuum Improve nitrogen and phosphorus uptake Lee and Eom, 2015 

Funneliformis mosseae Morus alba Improve growth via increase in 

chlorophyll contents, photosynthesis 

rate, stomatal conductance 

Shi et al., 2016 
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Trichoderma fungi found as free living and produce 

antibiotics, compete with other pathogens and act as parasite 

of other pathogenic fungi (Harman et al., 2004; Srinivas et 

al., 2017). Trichoderma produces auxin related compounds 

and increases the aerial and root growth of Arabidopsis 

(Contreras-Cornejo et al., 2009). Trichoderma virens during 

symbiotic relationship with maize plant increases the plant 

photosynthesis rate, produces elicitors that activate defense 

mechanism in maize leaves systemically (Vargas et al., 

2009). Trichoderma spp. release bioactive substances and 

enhances the plant's defense by inducing the local as well as 

systemic resistance after colonizing epidermis and cortical 

layer of roots (Harman et al., 2006). This fungus also 

induces systemic resistance against pathogens (Viterbo et 

al., 2007). Trichoderma spp. also affect the plant genes 

involved in ethylene biosynthesis, scavenging of reactive 

oxygen species (ROS), photorespiration, and modulates 

stomata opening, leaf transpiration via abscisic acid-

dependent mechanism (Segarra et al., 2007; Contreras-

Cornejo et al., 2015).  

Mycorrhizal fungi also play role in the environmental 

science by forming symbiotic relationship with plants that 

reduces the nitrous oxide (N2O) emission from soil and is 

helpful for environment as N2O causes destruction of ozone 

layer. Therefore, this symbiotic relationship shows dual 

benefits in terms of plant as well as in reducing global 

warming (Bender et al., 2014). Fungi having symbiotic 

association with plants also interfere with the insect’s 

behavior. Symbiotic relationship between fungi and plant 

brings changes in plant biochemistry which acts positively 

for plant and negatively for plant pests. Interaction studies 

proved that Cucumis sativus (Cucumber) have symbiotic 

relationship with fungus Colletotrichum tropicale that 

reduced the foliage damage significantly caused by Atta 

colombica (leaf cutting ant) (Estrada et al., 2013).  

Plant pathogenic oomycetes 

Oomycetes are most important soil borne plant 

pathogens after fungi, cause mutilation to agricultural 

production and natural ecosystem. Oomycetes have unique 

molecular process for parasitizing their hosts that is 

different from true fungi but morphologically resembles 

due to filamentous growth habit. Oomycetes have nine 

genera, but two genera Phytophthora and Pythium are 

pathogenic with a number of species that parasitize a wide 

range of host plant; however, some saprophytes are 

beneficial to the environment. Phytophthora includes more 

than 60 species and most of these are pathogens to 

dicotyledonous as well as monocot plants. The most 

notable specie is Phytophthora infestans which was the 

main reason for the Irish potato famine. Other important 

diseases caused by Phytophthora include; soybean root rot, 

cocoa black pod and dieback and sudden oak death 

(Davidson, et al., 2005).  

Pythium includes >100 important pathogenic species 

and some of these are Pythium aphanidermatum, P. 

ultimum, P. phragmitis, P. litorale, P. dissotocum and 

many more near about 125. These are occurring in soil, 

water, sand and peat as well. Some of these are harmful 

plant pathogens and cause a number of diseases including 

rots of seedlings and roots, damping off and decaying of 

fruits and vegetables (Hayden et al., 2013; Bouwmeester et 

al., 2018). 

Plant beneficial oomycetes 

Fighting of beneficial microorganisms with root 

pathogens and modulating the plant immunity in pathogenic 

agricultural ecosystem is referred to as positive symbiosis. 

Some oomycetes like Pythium oligandrum reduces the 

infections caused by pathogenic microbes (Yacoub et al., 

2018). Pythium protect the plant from pathogen attack 

directly, through mycoparasitism and antagonism or 

indirectly by induction of defense responses. P. oligandrum 

uses specific mechanisms to attack its prey. Through the 

production of microbe-associated molecular patterns, it 

activates the jasmonic acid and ethylene-dependent 

signaling pathways. It reduces systemic resistance of the 

plant against pathogen (Benhamou et al., 2012). 

Mycoparasitism that is the ability of a parasite to attack 

a pathogen is a key component of P. oligandrum 

antagonistic process. P. oligandrum interactions with 

fungal/oomycetes pathogens occur after extracellular 

sensing mechanism that precedes with attachment and 

penetration in the host hyphae (Benhamou, et al., 1999). It 

is observed that P. oligandrum transcripts the production of 

encoding proteases, glucanases, cellulases, protease 

inhibitors, putative effectors and elicitors which is the first 

step of mycoparasitism (Horner, et al., 2012). After 

recognition, the binding of antagonist to the host takes 

place. The activity of hydrolytic enzymes enhances the 

degradation of host cell walls that facilitates the entry into 

cell and provides carbon sources required for active growth 

and development. On penetration, multiplication of 

antagonistic cells occurs and P. oligandrum forms several 

papilla-like structures at penetration sites. Owing to this 

interaction, pathogen's hyphae appear as empty shells with 

highly altered cell walls and P. oligandrum cells can be 

observed in dead host hyphae. Similarly, Phytophthora 

parasitica interaction with P. oligandrum represents the 

Phytophthora parasitica hyphae, exhibiting altered cell 

walls after mycoparasitm, which proves that P. oligandrum 

synthesize the cellulose in response of pathogen signal. The 
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mechanism of action used by P. oligandrum for enhancing 

plant defense has been presented in Figure 1.    

P. oligandrum is considered as a rhizosphere competent 

that have the capability to extend into root tissues without 

destroying them. This type of association is useful for the 

plants as it provides localized and systemic induced 

resistance to various biotic responses. On invasion by 

pathogen, sudden degradation of invading hyphae and 

pathogen’s cells gradually degenerates and converted in to 

empty walled structures. Plant defense reactions are mainly 

characterized by the formation of discrete wall appositions 

after establishment of P. oligandrum with plant roots. The 

induction of phenylpropanoid and terpenoid pathways take 

place that lead to the accumulation of rishitin, a well-known 

phytoalexin (Le-Floch et al., 2005). After accumulation of 

phenolics, P. oligandrum starts to alter its hyphae and 

shows positive response as plant defense reactions. The 

mode of action of P. oligandrum shows resemblance with 

Trichoderma which have been considered as an 

opportunistic symbiotic fungus (Trillas and Segarra, 2009). 

The concomitantly degeneration of P. oligandrum hyphae 

with the accumulation of plant defense reactions indicates 

that like the other mutualistic agents those work through the 

production of effectors-like molecules, P. oligandrum is not 

able to short circuit plant defense responses (Plett, et al., 

2011; Zamioudis and Piesterse, 2012).  

P. oligandrum provides protection to the plants from 

pathogen infection and induces resistance against bacterial, 

fungal and oomycetes pathogens. P. oligandrum mediated 

induced resistance in tomato against soilborne pathogen 

Ralstonia solanacearum i.e. a root pathogenic bacterium 

that causes lethal wilting disease (Genin and Denny, 2012). 

Increase in beta-1, 3-Glucanase and stilbene synthase 

transcripts, validates the P. oligandrum potential to activate 

the synthesis and accumulation of defense-related 

molecules. For example, the production of phenolics and 

pathogenesis related (PR) proteins which are responsible for 

reducing the pathogen viability (Abdel-Monaim et al., 

2017). 

P. oligandrum competes in the rhizosphere with native 

soil microflora for space in root zone niche and nutrients 

(Takenaka, et al., 2008). It was observed that the presence 

of P. oligandrum in the rhizosphere doesn’t influence the 

indigenous microflora and fungal populations but reduces 

 
Figure 1: Artificial inoculation of tomato plants to observe the P. oligandrum mechanism of penetration in the 

root’s epidermis. Hyphae abundantly colonize the cortex and on pathogen attack provides antagonism and 

development of host defense responses. 
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the pathogenic P. dissotocum population in tomato 

rhizosphere (Vallance et al., 2009). P. oligandrum shifted 

the pathogenic bacteria in tomato rhizosphere, similarly as 

other biocontrol microorganisms and non-pathogenic fungal 

strains do without harming the diversity of non-target 

rhizosphere microbial groups. P. oligandrum is considered 

as a symbiotic microorganism and its behavior of protecting 

the plant roots in the rhizosphere is similar to Trichoderma 

species. This oomycete colonizes roots without damaging 

the host plant cells (Le Floch et al., 2005) and promotes the 

plant growth and defense mechanism and may be 

considered as a plant growth promoting oomycetes. 

Phytohormones and secondary metabolites synthesized 

by beneficial microorganisms is a well-documented 

phenomenon for the plant growth enhancement. P. 

oligandrum produced large amounts of tryptamine (TNH2) 

an auxin like compound (Le Floch, et al., 2003). P. 

oligandrum secrete slight but frequent TNH2 in the 

rhizosphere which exerts a beneficial effect on plant 

physiology. TNH2 secreted by the P. oligandrum, is likely to 

be taken up by plant roots and converted into indole acetic 

acid (IAA) that ultimately plays a significant role in root 

elogation. 

Plant-bacteria interactions  

The microbial population that exists in the rhizosphere 

depends on root exudates for survival (Whipps, 1990). Due 

to the presence of such diverse population, this zone is very 

important from plant growth point of view. A diverse 

bacterial population is present in the rhizosphere that 

interacts with the plants. These interactions may be positive 

or negative ones. All these interactions cause significant 

impact on plant growth and development. These interactions 

are based on complex exchanges between both partners i.e.; 

microbes and plant. The beneficial and harmful nature of 

these relationships is all regulated by complex molecular 

signaling (Dardanelli et al., 2010; Zhang et al., 2017). 

Plant beneficial bacteria 

The plant growth promotion depends upon positive 

plant-microbe interactions. Among the diverse microbial 

populations occurring in the rhizosphere, plant growth 

promoting rhizobacteria (PGPR) are considered to be one of 

the major organisms owing to their ability to promote plant 

growth by virtue of their number of growths promoting 

traits (Mehmood et al., 2018). Among these growth 

promoting traits, production of hormones, solubilization of 

nutrients, production of siderophores and 

exopolysaccharides, nitrogen fixation and presence of very 

important enzymes like chitinase and ACC-deaminase are 

well documented in the literature (Nadeem etl. 2010; Glick 

et al. 2014). PGPR belong to some important genera such as 

Pseudomonas, Bacillus, Serratia, Enterobacter, Erwinia, 

Beijerinckia, Klebsiella, Flavobacterium, Burkholderia and 

Gluconacetobacter (Podile and Kishore 2006). Some 

examples of plant growth promotion by bacteria have been 

presented in Table 3.  

These beneficial bacteria not only improve plant growth 

under normal conditions but also protect the plant from 

negative impacts like stresses. These bacteria mitigate the 

stress induced impact by the activity of their ACC-

deaminase enzyme, exopolysaccharides production and 

enhancing the activity of antioxidant enzymes and 

regulating the nutrient uptake (Glick et al., 2007; Nadeem et 

al., 2010a). For example, under stress conditions like 

salinity and drought, a significant increase in ethylene 

concentration is recorded that causes negative effect on 

plant growth by inhibiting root growth (Nadeem et al., 

2010b). This negative impact of stress-induced ethylene can 

be minimized by inoculating with PGPR containing ACC-

deaminase activity (Glick et al., 2007). Similarly, PGPR 

having ability to produce exopolysaccharides can be used 

effectively for protecting the plant from desiccation under 

water-limited environment (Sandhya et al., 2009). 

Phosphate and potassium solubilizing bacteria play key role 

for increasing the availability of phosphorus and potassium 

to the plant (Archana et al., 2012; Panhwar et al., 2014). In 

addition to these, the availability and uptake of other 

macronutrients like Ca, also improves when plants are 

inoculated with PGPR (Lee et al., 2010).  

These PGPR also protect the plant from deleterious 

impacts of various plant pathogens. This can be achieved 

either by decreasing the availability of certain nutrients to 

the pathogen or degrading the cell wall of pathogens. The 

former is achieved by the production of siderophores that 

binds iron and makes it unavailable to the pathogen 

(Bhattacharyya and Jha, 2012). The PGPR can also protect 

the plant from diseases by degrading the cell wall of the 

pathogen by the activity of their chitinase enzymes 

(Beneduzi et al., 2012). Such biocontrol bacteria can lyse a 

portion of the cell walls of many pathogenic fungi by 

producing enzymes like chitinases, cellulases, glucanases, 

proteases, and lipases. They can also mitigate the negative 

impact of pathogen by enhancing plant resistance against 

diseases by a mechanism called induced systemic resistance 

(ISR) (Saravana Kumar et al., 2007). Components of 

bacteria that can activate ISR include lipopolysaccharides 

(LPS), salicylic acid, and siderophores (Lugtenberg and 

Kamilova, 2009). In plant-bacteria interactions, the 

introduced bacteria initiate a reaction in plant root that 

results in transfer of signals throughout the plant. This 

activates the plant defense mechanisms against the pathogen 

attack. These mechanisms include strengthening cell wall, 
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synthesis of pathogen related proteins and production of 

anti-microbial phytoalexins (Van loon, 2007).  

Plant pathogenic bacteria 

Plant growth enhancement is a well-known aspect of 

the rhizosphere bacteria. However, certain studies show the 

negative effect of these bacteria on plant growth and 

development (Saharan and Nehra, 2011; Su slow and 

Schroth, 1982). This negative impact might be due to 

production of compounds that are harmful for plant or 

overproduction of certain growth regulators. Auxin is a 

well-known hormone that enhances plant growth; however, 

Table 3: Effectiveness of plant growth promoting rhizobacteria on plant growth under normal and stress 

conditions 

Improvement in plant growth under normal condition 

Crop Response Reference 

Straw Berry 

(Fragaria ananassa) 

Inoculation significantly increased fruit yield, plant growth and 

leaf P and Zn contents of organically grown straw berry 

Esitken et al., 2010 

Potato 

(Solanum tuberosum) 

Rhizobacterial strains caused significant impact on potato 

however showed variable response regarding their ability to 

promote plant growth 

Dawwam et al., 2013 

Maize 

(Zea mays) 

A multi-strain bacterial consortium enhanced the maize growth 

by increasing the availability of P and K.  

Abou-el-Seoud 

and Abdel-Megeed, 2012 

Tomato 

(Solanum 

lycopersicum) 

Application of P and K solubilizing bacteria caused significant 

effect on tomato growth 

Lynn et al., 2013 

Okra (Abelmoschus 

esculentus) 

Inoculation of bacteria enhanced the root and shoot growth of 

bacteria.  

Prajapati et al., 2013 

Tobacco (Nicotiana 

tabacum) 

Tobacco growth significantly improved that was due to efficient 

uptake of K and N in the presence of inoculating bacteria. 

Zhang and Kong, 

2014 

Wheat (Triticum 

aestivum) 

Bacteria in combination with biofertilizer enhanced the growth, 

productivity and net return of wheat 

Hussain, 2016 

Century plant 

(Agave americana) 

Inoculating bacteria caused significant impact on plant growth 

and sugar content of Agave Americana L. through nutrient 

solubilizing and phytohormone production ability 

Torre-Ruiz et al., 2016 

Growth enhancement under stress condition 

Tomato (Solanum 

lycopersicum) 

Inoculated strains enhanced the root and shoot growth of tomato 

under salinity stress.  

Tank and Saraf, 2010 

Mustard Greens 

(Brassica juncea) 

Improvement in phytoremediation efficiency of inoculated plant 

has been observed  

Qui et al., 2014 

Pearl millet 

(Pennisetum glaucum) 

Protected the plant from Zn toxicity, temperature and salinity 

stress by the production of phytohormones and enhancing 

availability of phosphorus 

Misra et al. 2012 

Wheat 

(Triticum aestivum) 

Under salinity stress PPGPR inoculation significantly improved 

wheat growth by reducing the availability of Na through the 

production of exopolysaccharides  

Upadhyay et al., 2011 

An endophytic strain Burkholderia phytofirmans 

PsJN improved wheat growth under drought by improving ion 

balance 

Naveed et al., 2014  

Maize (Zea mays) 
Enhanced maize growth by reducing the stress-induced ethylene 

through their ACC-deaminase activity  

Ahmad et al., 2014 

Cucumber (Cucumis 

sativus) 

Inoculated plant showed better growth under salinity stress 

compared to uninoculated plants 

Nadeem et al., 2016 

Inoculated bacteria regulated the growth by altering the level of 

abscisic acid, jasmonic acid and salicylic contents 

Waqas et al., 2012 

Improved drought stress tolerance by improving the efficacy of 

antioxidant system 

Wang et al., 2012  
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its positive and negative role is related to its concentration. 

At low concentration, it improves plant growth (Patten and 

Glick, 2002) while at high concentration, it inhibits the 

growth due its negative impact on plant root (Xie et al., 

1996). Certain bacterial strains produce cyanide that has 

inhibitory effect on plant growth and development 

(Agbodjato et al., 2015). Pseudomonas aeruginosa is a 

well-known strain that have the ability to degrade 

contaminants; however, it is also an opportunistic pathogen 

(Mahajan-Miklos et al., 1999). Microbial volatiles are 

organic compounds that are produced by all microorganisms 

as part of their normal metabolism. These volatile 

compounds make a good contribution to the plant-microbe 

interactions than non-volatile ones. Volatile compounds 

released by microorganisms may cause inhibitory or 

stimulating effect (Tirranen and Gitelson, 2006). Weise et 

al. (2013) reported the emission of ammonia that caused the 

alkalization of the medium and reduced growth of A. 

thaliana. Similarly, the production of dimethyl disulfide, 2-

phenylethanol and hydrogen cyanide by bacterial strains 

acts as phytotoxic volatiles (Blom et al., 2011; Wenke et al., 

2012,). 

Mechanisms of action used by pathogenic 
microbes 

Fungi 

To obtain food for growth, fungi interact with the host 

plant cell wall that contains substances like minerals, simple 

sugars, nucleotides and amino acids used by fungi for their 

growth (Tonukari, 2003). Interaction of fungi with host 

plant involves their physical contact, followed by different 

mode of penetration into the host cells. Some fungi apply 

mechanical force on their host plant surface for penetration. 

For this purpose, they have to adhere to the host surface 

with the help of mucilaginous substances present on fungi 

hyphae. In addition to this, spores of some fungi also 

contain adhesive substances on their surface which on 

hydration help to be attached to host surface (Bastmeyer et 

al., 2002). Tip of hyphae form bulb like structure 

appressorium that increases the area of attachment and a 

fine growing point (penetration peg) is developed from 

appressorium which moves into the cuticle and cell wall. In 

powdery mildew fungi, turgor pressure of 2-4 MPa is 

developed in appressoria which is sufficient for penetration 

into host cell (Agrios, 2005). In some fungi like 

Magnaporthe, Colletotrichum, Alternaria, 

Gaeumannomyces, Verticliium and Cochliobolus 

penetration only takes place if the melanin accumulates in 

appressorium (Agrios, 2005).  

Fungal pathogens are also assisted by specific enzymes 

like cutinases, lipases, pectin methyl esterases, pectinases, 

pectin lyases, xylanases, and polygalacturonases to 

overcome penetration barriers present on site of host (Laluk 

and Mengiste, 2010; Lionetti et al., 2012). Fungus 

penetration tube has narrow diameter and thread like 

structure which when passing through cuticle its diameter 

increases. Function of these enzymes is to soften the host 

cell wall or even helps to dissolve host cell wall which 

makes its penetration easier (Cantu et al., 2008; Tundo et 

al., 2015). It has been observed that two cellulases enzymes 

one at the tip of primary germ tube and other at the 

appressorial germ tube were present that facilitated this 

penetration (Pryce-Jones et al., 1999). 

During the interaction of fungi with host plants 

different substances are secreted by the fungi i.e.; toxins, 

polysaccharides, enzymes and growth regulators. The 

contribution of these substances in pathogenicity varies 

depending upon the nature of the disease. In soft rots of 

fruits and vegetables, enzymes affect protoplast 

components, enhance break down of structural components 

and inert food substances in cell (Jayani et al., 2005). 

Bipolaris blight disease of Victoria oats is caused by the 

toxin produced by the pathogen which affects the 

permeability of cell membranes and protoplast components 

(Wolpert et al., 2002). Similarly, growth regulators can also 

enhance the virulence of fungi and such virulence is 

generally occurring at high concentration of growth 

regulators (Gohlke and Deeken, 2014). 

Most of the time fungi interact with their host at plant 

surface which is covered with waxy layer. Study at 

molecular level showed that some fungi like Puccinia 

hordei and Pestalotia malicola produce enzymes which 

degrade cuticular waxes (Hardham, 2007). For the 

breakdown of cutin, fungi produce cutinases which reduces 

polymers to monomers and oligomers of the component 

fatty acid derivatives. These monomers enter the fungi cell 

and cause triggering of cutinase genes. In response to this, 

fungi cell produces thousand times more cutinase as 

compared to earlier (Kim and Rhee, 2003). Several facts 

showed the involvement of cutinase in fungi penetration via 

cuticle (Li et al., 2003; Morid et al., 2009). It is also evident 

from the work of Agrios (2005) that no virulence was 

observed due to infection of mutant fungi i.e. deficient in 

cutinase whereas reverse was happening when cutinase was 

provided on host surface. Cutinase activity increases as the 

fruit matures ultimately fungus penetrates the fruit. Also, 

virulent isolate showed more cutinase as compared to 

avirulent isolate. Cryphonectria parasitica which causes 

chestnut blight also showed that cutinase production is more 

in virulent strain as compared to hypovirulent strain (Varley 

et al., 1992). Some fungi require a single cell wall degrading 

enzyme (CWDE) while others require several CWDEs 
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(Kubicek et al. 2014). Botrytis cinerea produces cutinase 

and lipase enzymes which play crucial role in cutin break 

down (Choquer et al., 2007) whereas virulence caused by 

Fusarium solani on potato was due to cutinase activity 

(Morid et al. 2009).  

Some fungi produce enzymes that degrade pectic 

substances i.e. major portion of middle lamella. These 

enzymes are pectin methyl esterases, pectinases, pectin 

lyases and polygalacturonases. Anthracnose diseases caused 

by Colletotrichum gloeosporioides in avocado fruit occurs 

due to the production of pectin lyase which is a key virulent 

factor (Yakoby et al., 2001). Aspergillus flavus 

pathogenicity increases on cotton boll which is controlled 

by pectinase genes (Shieh et al., 1997). Similarly, 

endopolygalacturonase enzyme produced by Botrytis 

cinerea cause virulence on tomato host (ten Have et al., 

1998). Endopolygalacturonase is also essential factor in 

pathogenecity of Alternaria citri on citrus plants (Isshiki et 

al., 2001). Plant pathogenic fungi also produces cellulases 

i.e. cellulose degrading enzymes that help in softening and 

disintegration of host cell wall which results in penetration 

of fungi into the host cells and results in disease production 

(Wilson, 2009). Hemicellulases enzymes (arabinase, 

galactanase, mannanase, endoglucanase, and xylanase) 

produced by fungal pathogens that breakdown the 

hemicellulose and results in fungi penetration within the 

host plant (Brito et al., 2006). Fungi belonging to 

ascomycetes and basidiomycetes fungi produce lignin 

decomposing compounds which enable them to cause 

disease (Dashtban et al., 2010). Similarly, several fungi 

produce amylases for starch breakdown, lipases and 

phospholipases for lipids breakdown (Gurung et al., 2013; 

Saleem and Ebrahim, 2014). Virulence of Fusarium 

compactum on broomrape infection is enhanced with 

addition of cellulolytic and pectinolytic enzymes which help 

the fungi in host penetration (Babalola et al., 2010). 

Toxins affect the host plant cell’s protoplast, by 

disturbing cell membrane permeability, inhibiting enzymes 

production and various biochemical and metabolic reactions 

taking place in the host cell (Daub et al., 2005). Toxins that 

affect a specific host species are called host 

specific/selective toxins, while those affecting non-host 

plants are called non-host specific/selective toxins (Lee, 

2010; Tsuge et al., 2013). Host selective toxins are one of 

the prerequisites for the microorganism to cause the 

infection. A number of fungi (Alternaria, Phyllosticta, 

Hypoxylon, Periconia, Corynespora and Cochliobolus) are 

able to produce host specific toxins. Some important toxins 

produced by the fungi have been presented in Table 4. 

Alternaria alternata produces tentoxin which causes 

chlorosis and spots in host plants (Ramm et al., 1994). 

Tentoxin affects the protein which is important for energy 

transfer into chloroplast. Phosphorylation in which ADP is 

converted into ATP is also inhibited by tentoxin. Tentoxin 

inhibits the function of polyphenol oxidase which plays 

significant role in resistance mechanisms of host plants. 

Alternaria alternata also produces host selective toxins, 

which target the four sites of cellular components i.e. 

metabolically important enzymes, mitochondrion, 

chloroplast and plasma membrane (Tsuge et al., 2013). 

Cercosporin is a toxin which is activated with light 

absorption and then reacts with oxygen molecule and 

produce oxygen reactive species that reacts with nucleic 

acids, lipids and proteins of the cells and enhance the 

Table 4: Toxin production by plant pathogenic fungi 

Fungi Toxins Hosts References 

Alternaria alternata Tentoxin Brassica chinensis Pusztahelyi et al., 2015 

Cercospora zeae-maydis, Cercospora 

zeina 
Cercosporin Corn, Zinnia Benson et al. 2015 

Pyricularia grisea Pyricularin Rice Pooja and Katoch, 2014 

Ophiostoma ulmi Ceratoulmin Dutch elm Khoshraftar et al., 2013 

Fusicoccum amygdali Fusicoccin Almond, Peach Michalak et al., 2005 

Cochliobolus victoriae Victorin/HV toxin Oat Friesen et al., 2006 

Cochliobolus carbonum HC toxin Maize Wight et al., 2013 

Cochliobolus heterostrophus race T T toxin Maize Wu et al., 2012 

Alternaria alternata pathotypes AAL toxin Tomato  Akagi et al, 2009 

Alternaria alternata pathotypes ACRL toxin Rough lemon/Citrus Chung, 2012 

Alternaria alternata pathotypes AM toxin Apple plant/ European pear Harimoto et al., 2007 

Alternaria alternata pathotypes AK toxin Japanese pear fruit Shimizu et al., 2006 

Pyrenophora tritici-repentis Ptr toxin Wheat  Day et al., 2015 

Stemphylium vesicaarium SV toxin European pear Puig et al., 2014 

Rhizopus stolonifer Fumaric acid Almond Teviotdale et al., 2001 

Cryphonectria parasitica Oxalic acid Chestnut Chen et al., 2010 
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virulence. Cercospora and other fungi produce cercosporin 

(You et al., 2008) that causes blight and leaf spot diseases 

like gray leaf spot of corn and Cercospora leaf spot of 

zinnia. Victorin or HV-toxin produced by Cochliobolus 

victoria, affects the oat variety Victoria (Friesen et al., 

2006). Primary target of the toxin is plasma membrane 

where it binds with proteins and affects its synthesis. It also 

accelerates the respiration, modified cell wall structure and 

causes loss of cellular electrolytes.  

HC-toxin is produced by the race 1 of Cochliobolus 

carbonum fungus that causes two important diseases in 

maize crop i.e. ear rot and northern leaf spot. T-toxin is 

produced by fungus Cochliobolus heterostrophus race T 

(Wu et al., 2012). Toxin was named as T toxin because of 

its production by only race T. This race is different from 

other races of C. heterostrophus because only this race 

produces T toxin. Toxin affects the ATP synthesis and 

mitochondria. Interesting fact about this fungus is that it 

attacks only maize varieties having Texas male-sterile 

cytoplasm (Horwitz et al., 2013). Similarly, fungus also 

produces other toxic compounds which are host specific. 

For example, HS toxin against sugarcane crop, AAL toxin 

against tomato crop producing stem canker symptoms 

(Akagi et al., 2009), ACRL toxin on rough lemon which 

causes metabolite leakage, disturb mitochondrial function, 

interfere with oxidative phosphorylation and 

posttranscriptional RNA splicing (Akimitsu et al., 1989; 

Ohtani et al., 2002). AK toxin that causes black spot on 

Japanese pear (Okada et al., 2000) and AM toxin that causes 

loss of electrolytes by affecting the cell wall and plasma 

membrane of apple plant (Harimoto et al., 2007) is other 

examples of toxins produces by fungi.  

Growth regulators like cytokinins, auxins, gibberellins, 

abscisic acid (ABA) and ethylene are naturally occurring 

compounds produced by both plant and microorganism. 

These are required in a minute amount and any hormonal 

imbalance causes a serious change in plant growth patterns. 

Like plant, fungi also produce host specific substances that 

may accelerate or inhibit the host’s normal growth. Plant 

pathogenic fungi cause number of plant diseases either due 

to disruption in host’s growth regulators production or 

hormones produced by the fungi themselves (Carris et al., 

2012). Host shows different abnormal response like, 

phyllody, leaf epinasty, stunting, stem malformation, 

rosetting, and excessive root branches. 

Diseases like corn smut (Ustilago maydis), pine western 

gall rust, cedar apple rust (Gymnosporangium juniper-

virginianae), azalea leaf and flower gall (Exobasidium 

azalea), banana wilt (Fusarium oxysporum f. sp. cubense), 

lime anthracnose (Colletotrichum acutatum) occur due to 

disturbance in the indole acetic acid (IAA) level in their 

hosts. This disturbance sometimes results due to inhibition 

of IAA oxidase, which ultimately results in increase in IAA 

level (Yin et al., 2014; Ludwig-Muller, 2015). Magnaporthe 

grisea produces IAA on rice infection and causes the host to 

produce its own IAA which induce the expansins (cell wall 

loosening protein) production, that ultimately loses the cell 

wall and other host barriers for microorganism (Jing et al., 

2011). 

Pathogenic fungi like Ustilago maydis, Fusarium 

oxysporum, F. chlamydosporum, Botryodiplodia 

theobromae produce gibberrellins during their infection 

process (Tsavkelova et al., 2006). U. maydis induces 

tumours due to gibberrellins on vegetative and inflorescence 

parts (Schirawski et al., 2006; Brefort et al., 2009). 

Sporisorium reilianum produces gibberellin and causes head 

smut of sorghum (Ghareeb et al., 2011). Cytokinins like 

zeatin and isopentenyl adenosine are also found in plants. 

Different plant pathogenic fungi from genera Taphrina, 

Uromyces and Schizophyllum also produce cytokinins 

(Tsavkelova et al., 2006). An increase in cytokinins level 

rust and smut galls and in bean leaves infected with rust was 

observed (Stirket al., 2006; Connor et al., 2012). However, 

low cytokinin level in cotton plants infected with 

Verticillium wilt has also been observed (Xu et al., 2011).  

Ethylene production by fungi also affects the root growth 

and causes root infection. Fusarium oxysporum, Pythium 

ultimum, and Penicillium cyclopium inhibit the root 

elongation and produce disease symptoms due to production 

of ethylene in rhizosphere region (El-sharouny, 1984). It is 

suggested that ethylene acts as germination inducing factor 

for conidia of the B. cinerea (Chague et al., 2002). 

Similarly, ABA plays important role in the mycelial growth 

acceleration of the fungi and therefore, play crucial role in 

fungi development on host plant (Janitor et al., 2002). 

Abscisic acid (ABA) is produced by a number of pathogenic 

fungi including Aspergillus niger, Botrytis cinerea, 

Cercospora spp. Cladosporium cladosporioides, 

Schizophyllum commune act as plant growth inhibitor 

(Siewers et al., 2004; Tsavkelova et al., 2006; Hartung, 

2010).  

Oomycetes 

The mechanism of pathogenesis of oomycetes is not 

fully understood as the interaction of oomycetes with plant 

roots occurs in soil, however, few studies have revealed the 

possible mechanism of pathogenic interactions of 

oomycetes with plants. These interactions include 

penetration within plant cells, re-differentiation of host cells 

to establish intracellular interfaces for nutrients and 

exchange of information with coded effectors proteins. 

Similarly, as AM fungi is surrounded by peri arbuscules 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149921/#bib45
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149921/#bib5
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membrane spiked with phosphate transporter and haustoria 

of Phytophthora enveloped by extra haustorial membrane. 

Haustoria of pathogenic Phytophthora facilitate the 

deployment of pathogen-encoded effector proteins. A 

chemical talk of P. palmivora and host plant roots is 

developed. Host plant produces cutin-derived signal for the 

interaction of both P. palmivora and AM fungi. Both 

microbes germinate and form the attachment and 

penetration structures, appressorium and hyphopodium, 

respectively. In case of AM fungi, intracellular hyphae are 

supported by a plant-derived pre-penetration apparatus. 

Specialized intracellular interfaces, haustoria and arbuscules 

formed within plant root cells in Phytophthora and AM 

fungi, respectively. P. palmivora and AM fungi follow the 

analogues mechanism of roots interaction under the soil 

(Figure 2). But P. palmivora pathogen-encoded factors 

enables colonization on host roots which in turns leads to 

the cell death, Phytophthora species are considered as 

necrotrophs.  

 

Figure 2: Phytophthora palmivora and arbuscular 

mycorrhizal (AM) fungi analogous mechanism 

to establish a root interaction with host plant 

Pythium infection is mainly limited to meristematic 

tips, epidermis, cortex of roots and fruits, but occasionally 

deeper into the plant tissues and reaches the vascular 

system. Pythium species produce variety of propagules 

including oospores, sporangia, hyphal swellings, motile 

zoospores and zoospores cysts in regulatory control of plant 

root exudates. Some species are not able to produce all 

stages while some can produce all of these stages (Van der 

Plaats-Niterink, 1981; Kuznetsova et al., 2018). Along with 

oospores, sporangia are the most persistent in rhizosphere, 

even in host absence for a long period. Root exudate in 

rhizosphere attracts different spp. of Pythium as other 

pathogenic or beneficial microorganisms do. Pythium spp. 

in turn rapidly produce oospores or zoopores and infect the 

plant root tissues after penetration through their germ tubes 

on roots of the host plants. A key requisite step in P. 

ultimum is thinning of oospores, enhance the formation of 

germ tube which leads to early root infection. Unsaturated 

fatty acids present in seed exudates are primary elicitors of 

P. ultimum in soil for sporangium germination, which 

stimulate the pathogenesis of P. ultimum against the seeds, 

roots and root exudates. Sporangium releases zoospores 

which are attracted to glutamic acid of roots and accumulate 

in the root hair region and zone of cell elongation just 

behind the root cap and germinate within minutes. All these 

oospores, sporangia, cysts and zoospores increase the 

inoculum potential on roots for infection. Once infection 

starts, it proceeds rapidly on roots or seeds and colonizes the 

whole infected surface.   

Bacteria 

Bacteria can cause plant infection by multiple ways. 

Infection may take place passively where bacteria can enter 

through natural plant opening like stomata or hydathodes. 

Entry of bacteria into plant can also take place through 

abrasion and wounds on roots, stem or on leaves. Entry of 

bacteria also takes place by placement of specific feeding 

insects and by seed immersion into inoculum. After entry of 

bacteria, the attachment of bacteria to the host cell takes 

place. Adhesion of bacteria to host surfaces is a crucial 

aspect of host. Polymeric hair like organelles called pili are 

involved in the adhesion of bacteria to the host. In addition 

to pili, certain bacterial surface factors with adhesive 

properties also play role in bacterial binding with host 

(Pizarro-Cerda and Cossart. 2006; Kline et al., 2009). 

Nutrient conditions in plant favor or inhibit the 

multiplication of bacteria in plant parts. After colonization, 

disease symptoms appear in the form of wilts, spots, blights, 

cankers and galls. Bacterial infection is caused by both 

types of bacteria including proteobacteria and 

actinobacteria. Virulence factors which determine disease 

severity are the most important characteristics of the 

bacterial pathogens. The major virulence factors include 

type I to VI secretion system, extracellular enzymes, 

polysaccharides, plant hormones and toxins. The use of 

these virulence factors varies with bacterial species. For 

example, Pseudomonas and Xanthomonas usually do not 

use the plant hormones as virulence factors whereas 

Xanthomonas secrete exopolysaccharides (EPS). It was 

observed that mutants of Xanthomonas which lack the 

ability to produce EPS usually lose their virulence function 

(Frederick et al., 2001). Pathogenic Gram-negative bacteria 

use the T3SS and exopolysaccharides are secreted by both 

Gram-negative and Gram-positive bacteria. For effective 

infection, some bacteria secrete extracellular enzymes to 

degrade plant cell wall that is the first barrier of protection 
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against pathogen attack. Erwinia carotovora use cell wall-

degrading enzymes as the main virulence factors. Toxins 

produced by pathogenic bacteria are secondary metabolites 

that affect physiology and biochemistry of host plant. Leaf 

scald disease of sugar cane caused by Xanthomonas 

albilineansis is due to a toxin i.e. albicidin that is major 

pathogenicity factor in X. albilineans.  

The secretion system is a distinct pathway that 

pathogenic bacteria use to secrete protein involved in 

virulence across the membrane. Currently six classes of 

secretion system type I to type VI (T1SS to T6SS) have 

been identified. In T1SS, bacteria export molecules form 

cytosol to external environment without periplasmic step 

(Deleperaire et al., 2004) while in T2SS, proteins 

translocate across the inner membrane to the periplasm and 

then external environment. Gram negative and Gram-

Positive bacteria use T1SS and T2SS pathway, respectively. 

T3SS system that is used by many bacterial species directly 

translocates toxin protein into cytoplasm of host plant 

(Lindeberg et al., 2012). The T4SS present in Gram positive 

and negative transport pathogenicity factor from inner 

bacterial cell to external environment or directly to host cell 

(Judd et al., 2005). The type V secretion system is the 

simplest secretion pathway that is widely present in Gram 

negative bacteria (Tseng et al., 2009). In this pathway, the 

protein is transferred in two steps. First step is mediated by 

secondary translocator across the inner membrane and in 

second step transportation occur through outer membrane by 

forming a protected module (Van Sluys et al., 2002). T6SS 

is a new system which ejects effector protein directly into 

the host cell or in the extracellular mileu (Tseng et al., 2009; 

Pukazki et al., 2007).  

Mechanism of infection caused by the bacterial toxins 

is different from T3SS in a way that no host specificity is 

required in case of toxin virulence (Appelmelk et al., 1996). 

Exopolysaccharides protect the bacteria from environmental 

stresses and cause pathogenicity by altering the accessibility 

of antimicrobial compounds and blocking the xylem 

(Denny, 1995).  

Plant defense against pathogenicity  

When pathogens come in physical contact with host, 

specific signals are received by the host plant indicating the 

presence of pathogens. These signals are very important for 

host in activation of its defense system. In order to protect 

themselves from pathogens, plants have self-defense 

mechanism consisting of chemical and biochemical 

substances which are produced when pathogen interact with 

plant. Certain defense substances are already present prior to 

infection so called pre-existing defense chemicals. For 

example, toxic exudates are present in sugar beet and 

tomato leaves against Cercospora and Botrytis spores 

(Agrios, 2005). Red scale onion contains catechol and 

protocatechuic acid against fungus Colletotrichum circinans 

that causes onion smudge disease (Lubaina and Murugan, 

2013). These substances cause the bursting of conidia after 

spore entry. Dienes, tanins and several phenolic compounds 

exist in high concentration in seeds, fruits and leaves of plants 

which offer resistance against phytopathogens like Botrytis. 

Catechin is present in strawberry leaves which protects host 

from Botrytis cinerea (Puhl and Treutter, 2008). Similarly, 

avenacin in oats (Owatworakit et al., 2013), dehydrotomatine, 

and alpha-tomatine in tomato (Nobuyuki et al., 2004) and 

saponins in different monocotyledons (Yang et al., 2006) are 

antifungal compounds. Plants surface also contain hydrolytic 

enzymes like glucanases and chitinases which breaks down 

fungi cell wall components (Patil et al., 2000; Van den Burg 

et al., 2006). 

Fungi produce different nonspecific elicitors like 

proteases, toxins, pectic enzyme, fatty acids, glycoproteins, 

carbohydrates and specific elicitors like suppressor 

molecules, avr gene products, hrp gene product which play 

role in pathogen and host recognition (Van Loon and Van 

Strien, 1999). During host pathogen interaction, elicitors from 

pathogen interact with specific molecules in host called as 

receptors. So, disease is established when plants having 

receptor sites recognized by the pathogen elicitors and plants 

lacking such sensitive sites remain disease free. For example, 

in wheat powdery mildew caused by Blumeria graminis f. sp. 

tritici produces carbohydrate which acts as elicitor and 

thaumatin like proteins act as receptor molecule, and PmHNK 

gene of wheat is involved in host resistance (Li et al., 2013). 

After the recognition of elicitors and receptors, series of 

biochemical and structural modifications occur in plant cells. 

These changes act as signal for different genes to be activated 

in this response. Molecules involved during intracellular 

signal transduction are ethylene, ATPases, protein kinase, 

hydrogen peroxide, calcium ions, phospholipases, and 

phosphorylases (Stone and Walker, 1995; Tuteja and 

Mahajan, 2007). These changes finally determine whether 

host acts as resistant or susceptible against that specific 

pathogen. Ethylene, jasmonates, fatty acids, salicylic acid, 

jasmonic acid, oligogalacturonides and systemin are involved 

in systemic signal transduction in plants (Turner et al., 2002; 

Savatin et al., 2014; Wang et al., 2018; Cortleven et al., 

2019). Hormone levels of plants are adjusted in response to 

the microbial colonization and propagation. Phytohormones 

have also been found interacting with various endophytic 

microbes including endophytic fungi. Recently the role of 

phytohormones including auxins, cytokinins, giberellins, 

ethylene, abscisic acid, jasmonates and brassinosteroids in the 

interaction of Piriformospora indica with higher plant species 

has been reviewed (Xu et al., 2018). Phytohormones act as 
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key players in plant defense against pathogens, revealed by 

the studies in model plants such as Arabidopsis thaliana. Co-

evolution of phytohormone signaling pathways and the 

phytocolonization of land suggests a likely requirement for 

plant adaptations to an environment which included 

pathogens as well (Berens et al., 2017). Regulated amount of 

these hormones in plant cells is the key factor responsible to 

halt an infection (Tezuka et al., 2019). Elevated levels of 

auxins or auxin signaling in infected host tissues promote 

various pathogenesis related processes including colonization 

of epiphytic microflora, hyperplasia (e.g. gall formation), 

inhibition of host defenses and spread of pathogen in host 

tissues (McClerklin et al., 2018; Kunkel and Harper, 2018). 

Ye et al. (2019) have recently found that the balance between 

root growth of maize and stalk rot disease is managed by an 

auxin regulated protein ZmAuxRP1. 

Plants that have structural defense owing to thick and 

hard cuticle, waxes, and spines form defense structures after 

host recognition like, cell wall defense structures (Van Kan, 

2006; Mendgen and Hahn, 1996), cytoplasmic defense 

reaction, and histological defense structures (Okubara and 

Timothy, 2005; Amil-Ruiz et al., 2011). During cell wall 

structures callose papillae deposits on cell wall inner side, 

cell wall thickening along infusion with phenolic 

compounds (Jacobs et al., 2003; Ton and Mauch-Mani, 

2004). In cytoplasmic defense reaction, nucleus either 

breaks into two or enlarges, protoplast disappears, 

cytoplasm enlarges, and become granular (Abdel-Fattah et 

al., 2011). Histological defense structures include formation 

of corky layers around point of infection. e.g. potato tuber 

infected with Rhizoctonia, formation of abscission layers, 

tyloses formation in xylem, gum deposition in stone fruits 

(Kitin et al.., 2010). 

Secondary metabolites that are toxic to fungi are 

produced after infection. Ferulic acid, sinapic acid, 

curcuminoids, caffeic acid, chlorogenic acid, coumarins, 

stilbenes, hydroxybenzoic acid are phenolic compounds toxic 

to fungi (Abad et al., 2007; Huang et al., 2009). Monilinia 

fructicola infection in peach brown rot disease is inhibited by 

chlorogenic acid (Lee and Bostock, 2007). Sinapic acid, p-

hydroxybenzoic acid, ferulic acid, and p-coumaric acid in 

date palm inhibit Fusarium oxysporum infection (Modafar 

and Moustani, 2001). During Mycosphaerella fijiensis 

infection of banana phenylalanine ammonia lyase (PAL) is 

produced by resistant plants and inhibits infection (Alvarez et 

al., 2013). Phenol oxidizing enzymes oxidize phenols to 

quinones that is more severe than phenolic compounds. 

Phytoalexins are toxic compounds against fungi produced 

after pathogen infection or by chemical and physical injury. 

Pisatin in pea against Ascochyta pisi (Morkunas et al., 2013), 

gossypol in cotton against roots infecting fungi (Mellon et al., 

2010), glyceollin in soybeans against Phytophthora sojae, 

Macrophomina phaseolina, and Sclerotinia sclerotiorum 

(Lygin et al, 2010) are other examples of toxins produced by 

plant against pathogens.  

Conclusion and future prospects 

The above discussed review examines the interactions 

taking place among the microbial community as well as with 

the plant. It is evident from the above discussed review that 

these interactions may be parasitic, mutualistic, commensal 

and/or pathogenic. These interactions cause significant impact 

on plant growth. The understanding about these interactions is 

very important from plant growth point of view. The present 

review indicates that the most microbial communities are 

complex and consisting of a number of species those interact 

with each other and also with other microbial population 

existing in the environment. In addition to interactions among 

microbial community, many insects also interact with 

microbes and play significant role in nutrient acquisition. Due 

to complex nature, validation of microbial interaction is very 

difficult if not possible. The literature shows that none of the 

mechanisms are necessarily exclusive and exhibited by a 

single strain. A microbial strain may be benefited in one 

environment can show negative behavior in other 

environment or when interact with some other microbes. The 

understanding of these interactions as well as mechanism of 

action is very important for getting benefits and sustainability 

of environment system. Based on above discussion it came to 

know that microbial infection, virulence and pathogenicity is 

a multi-factorial phenomenon.  

In order to gain better understanding about microbial 

interactions, there are still many aspects that need to be 

explored. For effective control of microbial pathogenicity, 

the nature of pathogen, its virulence factors as well as its 

interaction with host defense mechanism needs to be 

explored. Further study of virulence factors at molecular 

level is required to know their contribution in plant 

pathogen interaction. There is also a need to explore how 

interactions influences ecosystem processes.  
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