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Abstract 
 

Plant growth promoting rhizobacteria (PGPR) are well known microbial community by virtue of their fabulous 

growth promoting abilities in plants. Among various genera of PGPR including Bacillus, Enterobacter, Klebsiella 

and Azospirillum, Pseudomonas spp. attain special attention due to its distinctive traits like better root colonization, 

production of osmolytes, polysaccharides and phytohormones, bearing specific enzymes, stress adaptation abilities 

and positive interactions with other microbial communities. In spite of a number of scientific publications indicating 

their significant performance in sustainable agriculture there are also certain uncertainties about the consistent 

performance of this naturally occurring population, the controversial reports about certain traits of Pseudomonas 

put a sign of interrogation on their application on commercial scale. To the best of our knowledge, no comprehensive 

review is available that presents positive and negative impacts of Pseudomonas inoculation on plant growth as well 

as on soil environment in detail. Present review has been undertaken to discuss the competitive advantage of 

Pseudomonas spp. over other microbial populations and identify the most important aspects which could be helpful 

for enhancing plant growth and eliminating the environmental hazards. Also, the areas needing further input about 

the practical application of these species in the field have been discussed. 
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Soil microorganisms are very important naturally 

occurring population that play significant role in soil 

fertility, plant growth and maintaining healthier 

environment. This microbial population may comprise 

number of microorganisms like bacteria, actinomycetes, 

cyanobacteria and fungi. Some of these are considered 

efficient owing to their growth enhancing abilities. Among 

these naturally occurring populations, plant growth 

promoting rhizobacteria (PGPR) have been studied 

extensively due to their optimistic effect on plant growth 

and protecting the environment from various hazards.  

PGPR are free living bacteria that promote plant growth 

by root colonization (Kloepper et al.1989). These are also 

termed as plant health promoting bacteria or nodule 

promoting bacteria (Hayat et al., 2010) and can be 

categorized as intracellular (iPGPR) and extracellular 

PGPR (ePGPR) on the basis of their residing sites (Gray 

and Smith, 2005). Plant growth promotion by PGPR takes 

place by a number of direct and indirect mechanisms which 

have been discussed by various workers (Vessey, 2003; 

Zahir et al., 2004; Podile and Kishore, 2006; Nadeem et al., 

2010b; Singh et al., 2011). These growth promoting 

traits/mechanisms may differ among different genera and 

even within species of the same genera. However, three 

general ways by which PGPR promote the plant growth and 

development include; synthesizing a particular compound, 

facilitating the nutrient uptake and inducing resistance 

against diseases (Zahir et al., 2004; Cakmakci et al. 2006; 

Saravankumar et al., 2009). Although the mechanisms of 

growth promotion by PGPR are not yet fully understood 

(Dey et al., 2004), they play a potential role for enhancing 

crop production on sustainable basis (Shoebitz et al., 2009; 

Singh et al., 2011). 

The PGPR strains proving helpful for enhancing plant 

growth belong to different genera and some of the 

important genera include Azospirillum, Pseudomonas, 

Enterobacter, Bacillus, Serratia, Burkholderia, Variovorax 

and Klebsiella (Glick, 1995; Podile and Kishore, 2006; 

Dardanelli et al., 2009; Nadeem et al., 2010). Among these, 

Pseudomonas which show their abundant presence in 

rhizosphere (Muleta et al., 2009) attract major attention due 

to their outstanding growth promoting characteristics like 

better root colonization, production of enzymes and 

metabolites, nutrient solubilization, indole acetic acid and 

siderophores production, acting as biocontrol agent and 

inducing systemic resistance against diseases (Kloepper et 

al., 1989; Glick and Bashan, 1997; Ramamoorthy et al., 

2001; Podile and Kishore, 2006; Saharan and Nehra, 2011). 
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Poonguzhali et al. (2006) found Pseudomonas and Bacillus 

spp. as dominant species in the cabbage rhizosphere under 

fertilized conditions. They found that most of these species 

carried phosphate solubilization ability and ACC-

deaminase enzyme. In an earlier study, Brand (2000) found 

Pseudomonas as a dominant strain followed by Bacillus. 

The rhizosphere soil samples from Chamaecytisus 

proliferus showed a diverse community of many gram 

negative bacteria dominated by Pseudomonas, 

Burkholderia and Sphingomonas spp. (Donate-Correa et al., 

2005). They demonstrated that among these, Pseudomonas 

fluorescens could be a suitable microorganism for field 

application owing to its well defined growth promoting 

traits. Several studies performed and reviewed by different 

scientists indicate marvelous effectiveness of Pseudomonas 

spp. inoculation for promoting plant growth under normal 

(Zahir et al., 2004; Cummings, 2009; Hayat et al., 2010) as 

well as stress environment (Stockwell and Loper, 2005; 

Glick et al., 2007; Nadeem et al., 2010b; Glick, 2010). This 

tremendous performance of Pseudomonas ssp. was due to 

their particular characteristics and environmental friendly 

traits which enable them to survive under stress conditions 

and exhibit their potential regarding agricultural and 

environmental issue. 

In spite of well established and verified work that 

showed the valuable performance of Pseudomonas spp. for 

enhancing plant growth and development, there are certain 

notable reports which question the commercial use of these 

strains. For example, the production of cyanide by 

Pseudomonas has positive as well as negative impact on 

plant growth (Saharan and Nehra, 2011). On one hand, it 

acts as biocontrol agent against certain plant pathogens, 

while on the other hand, it is reported as growth inhibitor 

trait of bacteria (Schippers et al., 1990; Heydari et al., 

2008). Similarly, phytohormone auxin produced by number 

of Pseudomonas spp. plays dual role in plant growth by 

enhancing root elongation at low concentration (Patten and 

Glick, 2002; Egamberdieva, 2010) while inhibits elongation 

at high concentration (Arshad and Frankerberger, 1991; Xie 

et al., 1996). Presence of ACC-deaminase enzyme reduces 

the negative impact of stress-induced ethylene on growth by 

reducing its concentration (Mayak et al., 2004a,b; Glick et 

al., 2007) however, reduction in ethylene level has been 

reported to reduce the seedling germination and emergence 

(Petruzzelli et al., 2000; Chaudhuri and Kar, 2008). The 

production of biosurfactants by Pseudomonas spp. is an 

effective environmental trait (Satpute et al., 2010; Darvishi 

et al., 2011).  

The P. aeruginosa is a well known biosurfactants 

producing strain. The biosurfactants produced by this strain 

are effective in environmental science in a number of ways 

(Pacwa-Płociniczak et al., 2011; Chaprao et al. 2015). It 

also has biocontrol potential owing to production of 

antifungal metabolites (Bakthavatchalu et al., 2013). In 

spite of its environmental and agricultural important, it is 

also an opportunistic human pathogen that can cause 

infection in patients with cystic fibrosis, cancer patients 

undergoing chemotherapy and severely burned individual 

(Wagner et al., 2008; Goncalves-de-Albuquerque et al., 

2015). Such positive and negative role of same strain 

demands its careful application for a specific purpose.   

There is a need of comprehensive discussion and 

clarification on the role of Pseudomonas spp. so that better 

application of this naturally occurring population can be 

made for enhancing plant growth as well as for eliminating 

several environmental related problems. The present review 

has been taken up with an objective to study the 

competitive advantage of Pseudomonas spp. over other 

microbial communities and to analyze the best growth 

promoting and environment friendly traits so that maximum 

benefits can be obtained from their inoculation under 

normal and stress environment. Also, the effectiveness of 

Pseudomonas as a co-inoculant with other microbial 

species has been discussed. Moreover, the limitations 

related with Pseudomonas application and areas of further 

research have also been indicated.  

Pseudomonas traits with reference to plant 
growth promotion and Environment 

As it was discussed earlier, PGPR promote plant 

growth by a number of direct and indirect mechanisms and 

most of these mechanisms are common for several PGPR 

strains belonging to different genera. However, the 

occurrence and potential may vary among different genera 

and even within the genera. Certain species contain more 

than one and particular growth promoting traits that make 

them more competitive over the others and also enhance the 

effectiveness of that strain under variable set of conditions. 

Owing to the presence of some particular growth promoting 

traits, Pseudomonas is considered as well suited PGPR for 

enhancing growth and one of the most extensively studied 

rhizobacteria (Saravanakumar and Samiyappan, 2007; 

Glick et al., 2007; Harish et al., 2009; Saharan and Nehra, 

2011). 

Microorganisms enhance soil fertility by decomposing 

organic matter and increasing the nutrient availability. 

Egamberdiyeva (2007) found that P. alcaligenes PsA15 

stimulated the growth of maize and enhanced nutrient 

uptake in nutrient deficient soil. Similarly, P. fluorescens 

also enhanced the yield and nutrient content of banana 

plants (Kavino et al., 2010). They suggested that 

environmental problems raised by the excessive use of 

chemical fertilizers can be minimized by the application of 
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effective PGPR strains. Phosphate solubilization is a very 

important characteristic of Pseudomonas spp. The gene 

involved in mineral phosphate solubilization was cloned 

from P. cepacia (Babu-Khan et al., 1995). Hussein and Joo 

(2015) reported that among 122 microbial isolates, P. 

fluorescence showed highest phosphate solubilizing 

potential. The release of phosphorus from insoluble source 

by Pseudomonas has been attributed to the production of 

organic acids (Vyas and Gulati, 2009). The study of Oteino 

et al (2015) showed that organic acid (gluconic acid) 

production by endophytic P. fluorescens enhanced the 

growth of Pisum sativum L. by solubilizing phosphorus 

from insoluble source i.e. tricalcium phosphate. Like 

inorganic phosphorus, organic phosphorus can also be 

enzymatically mineralized by phosphate solubilizing 

Pseudomonas (Jorquera et al., 2008). Pseudomonas spp. 

can improve P availability through the production of 

phytases and organic anions. Gluconate that is a major 

component of Pseudomonas organic anion production that 

play important role in the mineralization of insoluble 

organic phosphorus. The work of Giles et al. (2015) also 

showed the phosphate solubilizing ability of Pseudomonas 

sp. They found that wild type strain having ability to 

produce gluconate can solubilize P from calcium-phytate 

where as mutant could not.  

In iron limiting environment, the production of 

siderophores by Pseudomonas spp. enhances the 

availability of iron for plant uptake on one hand (Rachid 

and Ahmed, 2005) while decreases the availability of iron 

for plant pathogens on the other hand, thus depressing the 

growth of disease causing organisms (Saharan and Nehra, 

2011; Saraf et al., 2008). Some plants may also utilize 

bacterial iron-siderophores complex by transporting it into 

its cells, where iron becomes available for plant after 

releasing from iron-siderophores complex (Crowley et al., 

1988). 

The biocontrol efficacy of Pseudomonas spp. is well 

documented (Nandakumar et al., 2001; Mathiyazhagan et 

al., 2004; Paul and Nair, 2008, Kavino et al. 2008). This 

biocontrol efficacy is due to production of a number of anti 

fungal metabolites. Saritha et al. (2015) found that P. putida 

able to produce siderophores, ammonia, 

hydrogen cyanide (HCN), protease, chitinase, urease and 

ACC-deaminase inhibit the growth of mycelial growth of F. 

oxysporum, C. fimbriata and S. rolfsii. The biocontrol 

potential of bacterial strains further increases when two or 

more strains of Pseudomonas are used together compared to 

single one (Saravanakumar et al., 2009). Similarly, the 

application of two Pseudomonas strains (Pf1 and FP7) 

caused an increase in chitinase activity that induced 

systemic resistance in rice (Radjacommare et al., 2004). 

This might be due to the reason that certain Pseudomonas 

spp. utilize chitin by degrading it owing to their chitinase 

activity and cause fungal cell lysis (Radjacommare et al., 

2004). Vivekananthan et al. (2004) reported that application 

of P. fluorescence amended with chitin caused induction of 

flowering in mango. The strain protected the mango from 

anthracnose pathogen Colletotrichum gloeosporioides Penz. 

by virtue of defense-mediating lytic enzymes chitinase and 

β-1,3-glucanase. As chitin is an important component of gut 

lining of insects, therefore by virtue of their chitinase 

activity, Pseudomonas may also play important role in 

insect pest management (Harish et al., 2009). Similarly, 

Pseudomonas sp. also showed tolerance to antibiotics and a 

number of heavy metals including arsenic, chromium, 

cadmium and copper (Canovas et al., 2003; Parameswari et 

al., 2009; Singh et al., 2010; Jafarzade et al., 2012; Lucious 

et al., 2013; Neethu et al., 2015). Pseudomonas spp. like P. 

fluorescens and P. putida produce hydroxamate type 

siderophores in high concentration in modified succinic 

acid medium (Sayyed et al., 2005). It has been observed in 

very earlier studies that hydroxomate siderophores 

enhanced cowpea growth in nickel contaminated soil by 

binding nickel and iron and therefore increasing the 

availability of iron to plant and also protecting them from 

nickel toxicity (Timmusk et al., 1999). Glick (2010) 

considered Pseudomonas as the most predominant and 

effective group of soil microorganisms that biodegrades 

complex organic compound.  

It is evident from above discussion, owing to the 

presence of some particular traits, Pseudomonas spp. are 

excellent candidates for application as effective inoculants 

to enhance growth and development of plant and cleaning 

of environment.   

Stress tolerance abilities of Pseudomonas spp. 

For better effectiveness of microbial inoculation in 

stress environment, it is necessary that inoculating 

bacteria have the ability to survive in adverse conditions. 

The ability of a strain to flourish in stress environment 

makes it more competitive for enhancing plant growth. 

Pseudomonas spp. are metabolically very versatile and 

can maintain their growth in a better way under stress 

conditions like dry and saline environment (Garbeva et 

al., 2004; Rajbanshi, 2008). These stress tolerant 

microbes adopt different mechanisms to maintain their 

growth under such harsh environment. For example, to 

maintain growth in saline environment, the bacteria 

establish and develop their internal pressure above the 

surrounding environment and they generally achieve this 

by accumulation of osmolytes in their body (Rhodes and 

Hanson, 1993; Litchfield, 1998). The survival of P. 

aeruginosa in sea by accumulation of glycine and betain 

is an example of this mechanism (Bakhrouf et al., 1991). 
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Betaine is also involved in the biosynthesis of 

cyclopropane fatty acids to increase the membrane stability 

of P. halosaccharolytica under extreme salty conditions 

(Monteoliva-Sanchez et al., 1993). Similarly, accumulation 

of glutamate and glucosylglycerol by Pseudomonas sp. under 

saline conditions was also reported by Pocard et al. (1994). 

They also postulated that ionic concentration of the media 

had effect on internal concentration of compatible solutes. 

Prior to this, the accumulation of glucosylglycerol under 

saline conditions was only reported in marine cyanobacteria 

(Reed et al., 1986).  

Elevated levels of temperature are generally harmful 

for the growth and development of living population. In 

order to isolate and select plastic loving bacteria, Gupta 

et al. (2010) found that 35 out of 86 bacterial isolates 

showed temperature tolerance up to 60oC for 30 minutes 

and 27 out of 86 isolates showed salt tolerance. They 

reported that most of these bacteria belonged to genera 

Pseudomonas, Xanthomonas, Flavobacterium, 

Agrobacterium and Bacillus. The ability of Pseudomonas 

spp. to tolerate high level of temperature i.e. up to 40oC 

was also reported by Srivastava et al. (2008). This 

extreme level of temperature tolerance was generally due 

to biofilm formation by the bacteria. However, they also 

mentioned that this adaptation was a regulatory process 

in which different kinds of genes could be involved. 

Biofilm formation provides a protective mode of growth 

and enhances the bacterial survival under adverse 

conditions (Webb et al., 2003). It has been observed that 

in many Pseudomonas spp. their ability to survive in 

desiccation and other stresses is influenced by the 

stationary phase sigma factor σ S (Sarniguet et al., 1995; 

Stockwell and Loper, 2005). This was also due to their 

ability to produce compounds like exopolysaccharides 

which protect them from desiccation (Sandhya et al., 

2009). Such Pseudomonas spp. having ability to tolerate 

water deficit environment could be used effectively for 

enhancing crop production in arid and semiarid regions 

of the world. Polyhydroxyalkanoic acids (PHA) 

mobilization is also known to enhance stress tolerance in 

P. oleovorans (Ruiz et al., 2001). It is also evident from 

work of Pham et al. (2004) that PHA accumulation in P. 

aeruginosa plays an important role in stress tolerance by 

developing biofilm formation. Klebensberger et al. 

(2006) reported that cell aggregation is an energy-

dependent response of P. aeruginosa to detergent stress 

which served as a survival strategy during growth in the 

presence of a detergent. 

The heavy metals are toxic for plant growth as well as 

microorganisms. However, presence of high levels of 

heavy metals also promotes resistance in bacteria against 

metals (Atlas and Bartha, 1997). Pseudomonas spp. are 

found relatively more efficient in bioaccumulation of 

heavy metals (Hussein et al., 1999) and certain 

Pseudomonas spp. are able to tolerate a high concentration 

of heavy metals (Hassan et al., 2008; Singh et al., 2010; 

Abdelatey et al., 2011). P. aeruginosa isolated from deep 

sea sample tolerated cadmium (Cd) concentration up to 

5mM. This was attributed to Cd precipitation by the 

bacteria that reduced its toxic concentration. Andreazza 

et al. (2010) also reported the tolerance of Pseudomonas 

spp. against Cd. Similarly, P. putida can tolerate copper 

(Cu) up to 3 mmol L-1 (Hussein et al. 2005). 

Microorganism also used other mechanisms to maintain 

a suitable metals level like chelation and extrusion of 

metals (Robinson et al., 2001). Canovas et al. (2003) 

revealed that genome of P. putida encodes an unexpected 

capacity to tolerate heavy metals and metalloids. Zhang 

et al. (2012) reported that siderophores production and 

enhancing the activity of antioxidant enzyme might be 

the main mechanisms of heavy-metal tolerance by P. 

aeruginosa. The microbial resistance to heavy metals 

also related to variety of detoxifying mechanism such as 

complexation by exopolysaccharides, binding with 

bacterial cell envelopes, metal reduction and metal efflux 

(Singh et al., 2010). Resistance to heavy metals by 

Pseudomonas stutzeri was related to its accumulation in 

cell wall (Deb et al. (2013). In a recent study, Xu et al. 

(2015 b, c) found that P. fluorescens ZY2 showed 

resistance against zinc and cefradine. They reported that 

endogenous nitric oxide and superoxide dismutase act as 

a mediator against the combined exposure of zinc and 

cefradine. Pseudomonas mediated the endogenous nitric 

oxide by the activity of nitric oxide synthase to eliminate 

reactive oxygen species. Liu et al. (2015) reported that 

czcRS genes studied in P. putida acts as a resistance 

mechanism against Zn2+, Co2+, and Cd2+. Pseudomonas 

can also tolerate antibiotics and Zhou et al. (2015) 

reported that Pseudomonas resistance to antibiotics can 

be affected by the type and concentration of co-exposed 

heavy metals.  

The above discussed review shows that Pseudomonas 

spp. have the ability to tolerate adverse conditions. This 

tolerant ability is due to presence of certain traits in 

these strains. According to view of Deepthi et al. (2014) 

the strains present in contaminated environment 

containing more traits when compared with normal soil. 

These traits enable them to grow normally in 

contaminated environment. Such strains can be used 

effectively in agriculture and environmental sciences.  

Mechanisms of action 

The mechanisms of growth promotion are almost 

common in all rhizobacterial species. Certain strains have 
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competitive advantage over others due to presence of more 

than one growth promoting traits. Similarly, certain 

rhizobacteria have the ability to protect the plant from 

adverse conditions by virtue of their particular 

mechanisms. A general picture of overall mechanisms 

used by plant growth promoting rhizobacteria for 

enhancing growth has been shown in Fig 1. 

 
Figure 1: Mechanisms used by Pseudomonas spp. for promoting plant growth and remediation of environment 
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Pseudomonas spp. are well known for their well 

established growth promoting mechanisms. Certain 

mechanisms are activated in the stress conditions and 

therefore enable the plant to maintain their growth in stress 

environment. Some of the important growth promoting 

mechanisms include production of growth regulators 

(phytohormones), mineral solubilization, siderophores 

production, phosphate solubilization as well as protecting 

the plant from number of biotic and abiotic stresses by 

enzymes like ACC-deaminase, chitinase, production of 

osmolytes and exopolysaccharides (Zahir et al., 2004; Glick 

et al., 2007; Saleem et al., 2007; Nadeem et al., 2010b; 

Hayat et al., 2010; Przemieniecki et al., 2015). The 

presence of all above mentioned growth promoting traits 

might be rare in strains belonging to single genera. It has 

been observed that most of the Pseudomonas spp. were 

found positive for these major growth promoting traits 

(Ahmad et al., 2006; Indiragandhi et al., 2008). Kandasamy 

et al. (2009) studied the molecular basis of plant growth 

promotion by Pseudomonas fluorescens through protein 

profiling. They found that twenty three different proteins 

were expressed in rice leaf sheaths and functional analysis 

showed that these differential proteins directly or indirectly 

involved in plant growth promotion.  

The production of growth hormones also called as 

phytohormones is a well established growth promoting trait 

of Pseudomonas spp. (Ahmad et al., 2005; Hariprasad and 

Niranjana,2009; Somers et al., 2004; Pallai et al., 2012). 

The production of growth regulators like cytokinins and 

auxin is helpful for plant not only under normal conditions 

but also plays protective role under stress conditions (Caron 

et al., 1995; Egamberdieva,2009; 2010; Yao et al., 2010; 

Malik and Sindhu, 2011). Similarly, production of 

siderophores increases the availability of iron for plant 

besides protects it from pathogens by making it unavailable 

for them (Saharan and Nehra, 2011).   

The presence of certain enzymes like ACC-deaminase 

and chitinase makesPseudomonas spp. very useful 

bioinoclant for plant growth promotion under stress 

conditions. Under abiotic stress conditions like salinity, 

drought, heavy metals and temperature, the ethylene 

concentration in plants increases due to the elevated level of 

ACC (Glick et al., 2007). The bacteria containing ACC-

deaminase dilute the negative impact of stress by degrading 

ACC into ammonia and α-ketobutyrate (Glick et al., 1998) 

and therefore reduce the elevated level of ethylene that is 

injurious for plant growth and development, particularly of 

root system (Jackson, 1991). The production of 

exopolysaccharides is helpful for enhancing growth in 

salinity and drought conditions (Asharf et al., 2004; 

Sandhya et al., 2009, 2010). In salinity stress, these 

exopolysaccharides protect the plant from Na+ ion toxicity 

by binding it (Kohler et al., 2006) and in drought stress not 

only enables the bacteria to maintain their growth under 

water deficit conditions but also protects the plant from 

desiccation (Sandhya et al., 2009). 

The production of antioxidant enzymes like catalases, 

peroxidases, glutathion and ascarbate is a well established 

mechanism to protect the plant from stress induced reactive 

oxygen species like superoxide, hydrogen peroxide and 

hydroxyl ion (Mittler, 2002; Yan et al., 2010). The 

Pseudomonas spp. have been reported to be useful for 

enhancing the activity of antioxidant enzymes and enable 

the plant to maintain their growth under stressed conditions 

(Fu et al., 2010; Sandhya et al., 2010).  

Another important mechanism used by Pseudomonas 

spp. is providing protection against pathogens. This is 

generally called as biocontrol and is achieved by 

competition, antibiosis and induced systemic resistance. In 

competition, bacteria reduce the availability of particular 

nutrient required by the pathogen for their growth. 

Reducing the availability of iron is one of the typical 

examples of biocontrol (Subba Rao, 1993). The mechanism 

of antibiosis based on the production of a 

compound/molecule that kill or reduce the growth of 

pathogen. Production of antifungal metabolites like, HCN, 

phenazines and pyrrolnitrin by Pseudomonas spp. is a 

prominent feature of these strains that play important role 

for enhancing the biocontrol activity of bacteria (Beneduzi 

et al., 2012; Bhattacharyya and Jha, 2012; Sivasakthi et al., 

2014).  

In induced systemic resistance, bacterial strains 

increase plant resistance against diseases by bringing a 

change in host-plant vulnerability (Van Loon, 2007). 

Similarly, the presence of chitinase enzyme degrades the 

cell wall of fungal pathogen (Shanmugam and Kanoujia, 

2011) and decreases plant susceptibility towards diseases. 

Flavonoids are antifungal compound that indirectly act as 

antifungal agents and protect the plant from pathogen attack 

(Parikh and Jha, 2012). Flavonoids content by improving 

fruit quality also offer potential benefits for human health in 

amelioration of chronic diseases. Inoculation of plant with 

Pseudomonas sp. also triggers the production of flavonoids. 

Work of Garcia-Seco et al. (2015) conducted under filed 

condition showed that inoculation of blackberry with 

Pseudomonas fluorescens caused increased expression of 

flavonoid biosynthetic genes and ultimately increase in 

flavonoids concentration of fruits. They demonstrated that 

Pseudomonas improves the quality of fruit by modifying 

flavonoids mechanism. Recently, Essarts et al. (2016) found 

that Pseudomonas putida and Pseudomonas fluorescens 

decrease the severity of soft rot and blackleg diseases 

caused by Dickeya dianthicola on potato plants and tubers. 
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Potential for sustainable agriculture 

The Pseudomonas spp. have competitive advantage 

over many other microbial communitiesdue to their variable 

and well documented growth promoting traits. These 

growth promoting strains have shown significant result 

regarding plant growth under normal as well as stress 

environment. Some selected examples have been mentioned 

in Table 1 & 2 and comparative performance of 

Pseudomonas spp. have been reviewed and discussed in the 

following sections.    

Table 1: Effect of Pseudomonas spp. on growth and yield of crops under normal conditions 

Pseudomonas spp. Experimental 

condition(s) 

Proposed mechanism(s) Plant response References 

Wheat 

Pseudomonas 

fluorescens (Q8r1-

96 and Q2-87) 

Growth room  Root colonization Increased shoot length, root 

length and root diameter. 

Improved wheat yield 

Gamalero et al. 

(2003) 

P. fluorescens 

PsIA12 

Pot 

experiments 

Production of plant growth 

regulators 

Increased root and shoot growth, 

enhanced uptake of N, P, and K  

Egamberdiyeva 

and Hoflich 

(2003) 

P. fluorescens, P. 

fluorescens 

biotype F 

Pot and field 

trials 

ACC-deaminase activity, 

auxin production, 

phosphate solubilization 

Enhanced root elongation and 

root weight. Increased number 

of tillers, 1000-grain weight and 

grain yield 

Shaharoona et 

al. (2007, 

2008) 

P. chlororaphis sub 

sp. aurantiaca SR1 

Field trial Production of siderophores 

and phytohormones, 

phosphate solubilization 

Significant increase in plant 

height, root length and number 

of grains per spike 

Carlier et al. 

(2008) 

P. putida spp. (Wp1 

Cfp10, Wp150) 

Field trial Auxin and siderophores 

production, phosphate 

solubilization 

Improved plant height and root 

length. Improved crop yield 

Abbas-Zadeh 

et al. (2010) 

P. fluorescens 

BAM-4 

- Phosphate solubilization, 

production phytohormones 

and siderophores 

Improved overall growth of 

wheat plants and enhanced yield 

Minaxi et al. 

(2013) 

Maize 

P. putida Green house 

experiment 

Production of metabolites 

and IAA  

Increased root/shoot weight, 

inhibit the growth of various 

fungal pathogens 

Mehnaz and 

Lazarovits 

(2006) 

P. fluorescens Pot 

experiment 

ACC-deaminase activity Increased plant height, root 

weight and total biomass 

Shaharoona et 

al. (2006) 

P. corrugata Pot and field 

experiment 

Root colonization and 

stimulation of indigenous 

microflora 

Enhanced grain yield of maize, 

high root-shoot ratio 

Kumar et al. 

(2007) 

P.  fluorescens Field 

experiment 

Production phytohormones 

and phosphate 

solubilization 

Higher biomass production, 

grain yield and better root 

colonization. 

Naiman et al. 

(2009) 

P. aurantiaca SR1 Field 

experiment 

Root colonization, nutrient 

mobilization and 

production of indole acetic 

acid 

Enhanced root growth and yield 

of wheat and maize compared to 

uninoculated control 

Rosas et al. 

(2009) 

P. putida Greenhouse 

and field trials 

IAA production and 

antifungal metabolites 

Increases in total dry weights of 

root and shoot, inhibit fungal 

growth 

Mehnaz et al. 

(2010) 

P. cepacia Field 

experiment 

Phosphate solubilization 

and IAA production 

Significantly higher P 

availability, improved P uptake 

and increased plant biomass 

Katulanda and 

Rajapaksha 

(2012) 
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Growth enhancement under normal 
conditions 

Plant growth promotion under normal conditions is a 

common characteristic of most microbial species including 

bacteria. This growth promotion takes place due to growth 

promoting traits of PGPR which have been reviewed by 

various workers (Zahir et al., 2004; Egamberdieva, 2008; 

Saharan and Nehra, 2011). Some of the selected examples 

have been mentioned in the Table 1. 

For promoting plant growth, the introduced bacteria 

should have the ability to colonize the root and also survive 

and proliferate in the rhizosphere (Lugtenberg and 

Kamilova, 2009). Pseudomonas spp. are particularly 

considered as an effective rhizosphere colonizer owing to 

their  ability  to  utilize diverse  carbon  sources  present in  

Rice 

Pseudomonas 

sp. K1 

Pot experiment Phytohormones 

production 

Increase in shoot biomass and 

grain yield 

Mirza et al. 

(2006) 

P. fluorescens Laboratory, 

glass house 

and field 

conditions 

Accumulation of 

metabolites (chapronin 60) 

Improvement in plant growth 

parameters, seedling vigor and 

stress tolerance metabolites 

Kandasamy et al. 

(2009) 

P. jessenii 

LHRE62 and P. 

synxantha 

HHRE81 

Glass house 

condition 

Interactive effect of PGPR 

with cow dung by acting as 

biopesticide agent 

Enhanced root-shoot length and 

yield, and tolerance against foliar 

pathogens 

Srivastava et al. 

(2010) 

Vegetables 

Pseudomonas 

spp. 

Field trial Production of IAA, and 

stress related metabolites 

Cuttings produced higher root-

shoot biomass and yield 

Khan and Doty. 

(2009) 

P. entomophila 

strain PS-PJH 

Field trial ACC deaminase, 

production of secondary 

metabolites and enzymes 

Reduced disease severity on 

pepper plants and enhanced root 

length 

Kamala-Kannan 

et al. (2010) 

P. fluorescens Glasshouse 

and field trials 

Production of secondary 

metabolites 

Reduced damage due to 

Fusarium wilt in tomato 

seedlings and 8-fold increase in 

dry root-shoot weight and fruit 

yield was observed 

Sarma et al. 

(2011) 

P. 

chlororaphisMA

342, fluorescens 

CHA0 

Glasshouse 

and field trials 

Production of 

phtohormones and 

secondary metabolites 

Improved seed emergence, 

seedling fresh weight and yield 

of carrot and onion 

Bennett et al. 

(2009) 

Legumes 

Pseudomonas 

spp. 

(44MS8, 10M3) 

Pot experiment Root colonization and 

production of secondary 

metabolites 

Increased fresh biomass, pod 

number, pod wall thickness with 

no deleterious effect on plant 

health 

Babalola et al. 

(2007) 

Pseudomonas 

spp. GRP3 

Pot experiment Siderophores production Reduction of chlorotic symptoms 

and enhanced chlorophyll level 

(chlorophyll a, b) 

Sharma et al. 

(2003) 

P. alcaliphila 

AvR-2 

Pot experiment Phosphate solubilization, 

siderophores and IAA 

production 

Enhanced shoot length, fresh 

biomass, number of pods and 

grain yield 

Ali et al. (2010) 

Pseudomonas sp. 

AvH-4 

Pot trial Auxin production, ACC 

deaminase activity 

Enhanced root-shoot length, 

seedling fresh weight and yield 

Noreen et al. 

(2012) 

Pseudomonas 

strains CPS63 

and MPS78 

Jar experiment  IAA production, root 

colonization 

More nodule formation, gains in 

plant dry weight and yield 

Malik and 

Sindhu 

(2008) 
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Table 2: Potential of Pseudomonas spp. for biotic/abiotic stress tolerance of crops 

Test crop Pseudomonas spp. Proposed mechanism(s) Specific comments References 

Waterstress (deficient / waterlogging) 

Maize P. aeruginosa (Pa2) EPS-production, 

antioxidant enzymes 

activities 

Improved relative water content, 

protein, sugar content, and total plant 

biomass 

Naseem and Bano 

(2014) 

Maize P. fluorescens (153 

and 169) and P. 

putida (4 and 108) 

Production of plant 

growth regulators 

and metabolites 

Protect plants from drought stress by 

partial amelioration of drought 

induced growth inhibition 

Ansary et al. 

(2012) 

Aleppo 

pine 

P. fluorescens CECT 

5281 

Osmotic adjustment 

and root colonization 

Improved growth, nutrition and 

tolerance to water stress 

Dominguez-Nunez 

et al. (2013) 

Pea (P. putida and P. 

fluorescens 

ACC deaminase 

production 

Enhanced shoot growth, flowering 

pod formation and grain yield 

Arshad et al. 

(2008) 

Mung 

bean 

P. simiae strain AU ACC deaminase 

production 

Enhanced plant growth and induced 

systemic drought tolerance by 

reducing stomata size and net 

photosynthesis 

Kumari et al. 

(2016) 

Salinity stress 

Maize Pseudomonas sp. 

54RB 

Osmolyte production 

and nutrient 

solubilization 

Increased accumulation of proline 

content, leading to a higher water 

potential gradient. Improved water 

uptake and growth 

Bano and Fatima 

(2009) 

Pseudomonas spp. Production of 

osmolyte and 

improved nutrient 

uptake 

Enhanced growth and yield under 

salinity stress 

Bano and Fatima 

(2009) 

Mungbean P. syringae, 

Mk1, P. fluorescens, 

Mk20 and P. 

fluorescens Biotype 

G, Mk25 

ACC deaminase 

activity 

Increased root-shoot biomass, 

nodulation, yield and water use 

efficiency 

Ahmad et al. 

(2011) 

Silybum 

marianum 

P. extremorienttail 

TSAU20 

ACC deaminase 

activity, nutrient 

mobilization and 

phytohormones 

production 

Improved root length, shoot length 

and total fresh weight 

Egambrdieva et al. 

(2013) 

Alfalfa P. fluorescence Production of 

osmolyte and 

improved nutrient 

uptake 

Under stressed and unstressed 

conditions, inoculation enhanced 

growth of plants 

Younesi et al. 

(2013) 

Common 

bean 

P. extremorientalis 

TSAU20 and P. 

chlororaphis 

TSAU13 

Rhizosphere 

colonization 

Increased root and shoot length Egamberdieva 

(2011) 

Rice P. 

pseudoalcaligenes 

MSP 538 

Synthesis of 

osmolytes and root 

colonization 

Increased growth and yield Diby et al. (2005) 

Tomato P. fluorescens YsS6 

and P. migulae 8R6 

ACC-deaminase 

activity 

Wild type strains with ACC-

deaminase protect the plant from 

salinity compared to their mutant i.e 

deficient of ACC-deaminase  

Ali et al. (2014) 
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Soybean P. simiae strain AU Synthesis of IAA and 

ACC-deaminase. 

Production of putative 

volatile and 

vegetative storage 

proteins 

Induce systemic tolerance against 

salinity and enhanced soybean 

growth compared to control. 

Vaishnav et al. 

(2015) 

Temperature stress (heat and cold stress) 

Potato Pseudomonas sp. 

PsJN 

Production of abscisic 

acid  

Inoculation significantly increased 

stem length, root-shoot biomass, 

tuber number and weight compared 

to mutant 

Bensalim et al. 

(1998) 

Wheat P. corrugata 

(NRRL B-30409) 

Phosphate 

solubilization, 

production of organic 

acids 

At low temperature, inoculation 

enhanced all plant growth parameters 

and soil enzymatic activities 

Trivedi and Sa 

(2008) 

Tomato P. vancouverensis 

OB155-gfp and P. 

frederiksbergensis 

OS261-gfp 

Activation of 

antioxidant system 

Induce chilling resistance by 

reducing membrane damage and 

reactive oxygen species 

Subramanian et al. 

(2015) 

Pathogen stress  

Banana Pseudomonas 

aeruginosa 

Production of 

atibiotics, 

siderophores and IAA 

Higher frequency of germination. 

Enhanced plant height and reduced 

the vascular discolouration 

Ayyadurai et al. 

(2006) 

Grapevine P. fluorescens 

(WSM3455 and 

WSM3456) 

Hydrogen cyanide 

production 

 

Inhibited growth of  both wild radish 

and ryegrass  

Flores-Vargas and 

Hara (2006) 

Tomato P. putida Production of 

secondary metabolites 

Improved growth, yield, root-shoot 

length and enhanced resistance 

against diseases caused by Pythium 

ultimum  

Gravel et al. 

(2006) 

Pea P. fluorescens Production of 

volatiles compounds, 

competition for Fe 

and root colonization 

Higher reduction in galling and 

nematode multiplication and 

enhanced disease resistance  

Siddiqui and 

Zehra (2012) 

Wheat P. fluorescens Production of 

antifungal metabolites 

Suppressed soil borne fungal 

pathogens, enhanced growth and 

yield 

Okubara and 

Bonsall (2008) 

Wheat P. fluorescens 

HC1-07 

Production of cyclic 

lipopeptide (CLP) 

Effective biocontrol agent against 

take-all disease and improved root 

growth 

Yang et al. (2014) 

Chir-pine P. aeruginosa 

(PN1-PN10) 

Production of 

siderophores, IAA 

and root colonization 

Increased plant growth and biomass, 

strong antagonistic property against 

M. phaseolina, suppression of 

disease 

Singh et al. (2010) 

Medicago 

truncatula 

P. fluorescens  Production of 

diffusible and volatile 

sulfur-containing 

compound 

Enhanced resistance against grey 

mold disease caused by Botrytis 

cinerea 

Hernandez-Leon 

et al. (2015) 

Common 

bean 

Pseudomonas spp. Production of lytic 

enzyme, cyanide, 

IAA and siderophores 

Protect the plant from bacterial 

blight, caused by Xanthomonas 

axonopodis pv. phaseoli 

Giorgio and 

Cantore (2016) 
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Inorganic pollutant (Heavy metal) 

Canola P. putida biovar B IAA production and 

ACC deaminase 

activity 

Increased plant biomass and nickel 

uptake by shoots and roots 

Rodriguez et al. 

(2008) 

Canola 

(Brassica 

napus) 

P. tolaasii ACC23 IAA, siderophores 

and ACC deaminase 

activity 

Enhanced plant growth under normal 

and Cd stress  

Amico et al. 

(2008) 

Black gram P. aeruginosa 

MKRh3 

ACC deaminase 

activity, siderophores 

production, phosphate 

solubilization and 

auxin synthesis 

Reduced cadmium uptake and 

enhanced plant growth 

Ganesan (2008) 

Brassica 

juncea 

P. fluorescens Pf 

27 

Acidifying 

rhizosphere and 

production of IAA 

and siderophores 

Increased uptake of water soluble and 

exchangeable metal content. 

Enhanced plant biomass and 

chlorophyll content,  

Fuloria et al. 

(2009) 

Tomato Pseudomonas sp. 

RJ10 

ACC deaminase 

activity, siderophores 

production, and auxin 

synthesis 

Increased root elongation He et al. (2009) 

Orychophra

gmusviolac

eus 

P. aeruginosa ACC deaminase 

activity, siderophores 

production, and auxin 

synthesis 

Zn tolerant bacteria enhanced Zn 

availability and Zn uptake by plants 

and increased root elongation 

He et al. (2010) 

Lens 

esculenta 

Pseudomonas sp. 

Sp7d 

Indole acetic acid and 

siderophores 

production 

Inoculation enhanced radical growth 

in the presence of heavy metals 

Franco-Hernández 

et al. (2010) 

Elsholtzia 

splendens 

Pseudomonas 

putida CZ1 

Indole acetic acid and 

siderophores 

production 

Stimulate the growth of plant and 

improve phytoextraction 

Xu et al. (2015a) 

Miscanthus 

sinensis 

Pseudomonas 

koreensis AGB-1 

Indole acetic acid and 

ACC-deaminase 

Decrease heavy metal toxicity and 

promoted plant growth. Also 

enhanced Soil dehydrogenase and 

acid phosphatase activities  

Babu et al. (2015) 

Pesticide/herbicide/fungicide 

Green gram P. aeruginosa Production PGRs, 

secondary 

metabolites 

biosynthesis 

Regulated many physiological 

activities of plants, such as, cell 

enlargement, cell division, root 

initiation and growth rate 

Ahemad and 

Khan (2011) 

Green gram P. aeruginosa Exopolysaccharides 

production, 

production of 

metabolites 

Increased plant biomass and nutrient 

content, formation of polymeric 

network around fungicide, prevented 

the uptake of fungicide 

Ahemad and 

Khan (2012) 

-     

Green gram P. aeruginosa PS1 Hydrogen cyanide 

and ammonia 

synthesized, EPS 

production 

Increased total chlorophyll content, 

leghemoglobin, root-shoot NP, seed 

yield and protein content 

Ahemad and khan 

(2010) 
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Root exudates (Kremer, 2006). This ability of 

Pseudomonas enables them to enhance plant growth in 

control as well as under field conditions. It is evident from 

the work of Smyth et al. (2011) who showed that the results 

obtained in vitro could not be fully reproduced under green 

house conditions. Among eighteen (18) bacterial strains 

belonging to different genera including, Pseudomonas, 

Bacillus, Acinetobacter, Exiguobacterium, Lysinibacillus, 

Micrococcus and Stenotrophomonas only one of the 

Pseudomonas sp. gave similar results in field as were 

produced in vitro. They postulated that although they could 

not check the survival of all these strains through out the 

experiment, however, they observed the survival of 

Pseudomonas throughout the season in their previous 

unpublished work. Rosas et al. (2009) applied P. 

aurantiaca SR1as an inoculant to study its effect on wheat 

and maize under field conditions. P. aurantiaca SR1 

colonized the root system of both crops and also enhanced 

the yield. It was also observed that Pseudomonas 

inoculation increased the yield of both crops with fertilizer 

dose lower than commercially applied. Similarly, 

Shahroona et al. (2006) found better performance of P. 

fluorescens in the presence and absence of nitrogen 

fertilizer. 

Pseudomonas and Brevibacillus sp. caused significant 

increase in forage growth of corn in pot as well as in filed 

study compared to commercial strain i.e Azospirillum 

(Piromyou et al. 2011).They demonstrated that better 

performance of Pseudomonas sp. might be due to 

phosphate solubilization characteristic of the said strain. 

Banchio et al. (2008) reported that among the bacterial 

strains isolated from the rhizosphere of Origanum 

majorana L. only P. fluorescens and Bradyrhizobium sp. 

produced significant increases in shoot length, shoot 

weight, root dry weight and oil content of the plant 

compared to untreated control and other isolates 

includingB. subtilis, Sinorhizobium meliloti and 

Bradyrhizobium sp.  

Pseudomonas spp. (P. fluorescens and P. putida) 

significantly increased the grain yield of wheat up to 26% 

(Abbaspoor et al., 2009). In earlier studies, these species 

were also reported to increase the root and shoot elongation 

in canola (Glick et al., 1997) and root dry weight and 

harvest index of wheat (Walley and Germida, 1997). P. 

fluorescens increased growth, leaf nutrient contents and 

yield of banana cv. Virupakshi (Musa spp. AAB) plants 

(Kavino et al., 2010). Similarly, seed germination and 

growth parameters of maize seedlings in greenhouse and 

also grain yield of field grown maize improved through 

Pseudomonas inoculation (Gholami et al., 2009) that 

indicated their potential for agricultural exploitation and 

could be used as natural fertilizer (Cakmakc et al., 2006; 

Gholami et al., 2009). Study of Naveed et al. (2008) 

showed that P. fluorescens and P. putida containing ACC-

deaminase improved the wheat growth even with low doses 

of nitrogen. Similarly, working on banana crops, Kavino et 

al. (2010) found significant impact of P. fluorescens on leaf 

nutrient content and yield of banana. They suggested that 

due to excessive use of fertilizers and high production cost, 

such PGPR strains could be an effective source for 

sustainable agriculture.  

The production of organic acids that seems to be 

frequent agent for phosphate solubilization is another 

characteristic of Pseudomonas spp. (Rodriguez and Fraga, 

1999). Pseudomonas also expresses a significant level of 

acid phosphatase (Gugi et al., 1991). Similarly, IAA 

production that is a common characteristic of Pseudomonas 

spp. (Ahmad et al., 2005; Karnwal, 2009; Khare and Arora, 

2010; Jangu and Sindhu, 2011) is helpful for enhancing the 

lateral and adventitious roots that increase the nutrient 

uptake and also due to the production of root exudates 

bacterial population proliferates on the root surfaces 

(Steenhoudt and Vanderleyden, 2000). This better root 

colonization enhances the plant root growth and more root 

density per unit volume obtained. This ultimately enables 

the plant to absorb water and nutrient from greater soil 

volume. 

In certain crops, cuttings are used to propagate their 

growth. Chemicals are used to stimulate growth in such 

cases but these chemicals have environmental concerns. 

Plant growth promoting rhizobacteria have the ability to 

stimulate the growth of such cuttings. The application of 

PGPR including Pseudomonas spp., Bacillus, Burkholderia 

sp. and Agrobacterium sp. on mint cuttings have shown 

growth promoting abilities (Kaymak et al., 2009). Prior to 

this, Mayak et al. (1999) showed that P. putida which was 

proven as a suitable inoculant for seeds to enhance root 

development was also suitable for development of cuttings. 

Therefore, Pseudomonas spp. by virtue of their growth 

promoting traits are very useful inoculums for enhancing 

plant growth and development. Inoculating the plant with 

specific strain not only enhances crop production but also 

minimizes the cost of production by reducing the rate of 

inputs.  

Protection against stress 

Biotic and abiotic stresses limit plant growth and 

productivity of most of the field crops. A number of 

strategies including chemical and biological ones have been 

used to dilute the depressing effect of stresses. The 

application of beneficial microbes is gaining much 

importance due to environmental concerns about the use of 

chemicals. 
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Pseudomonas has the ability not only to tolerate stress 

conditions (Sandhya et al., 2009) but also enables the plant 

to maintain their growth under stress conditions (Saharan 

and Nehra, 2011). The role of Pseudomonas spp. for 

enhancing plant stress tolerance has been mentioned in 

Table 2. These growth promoting abilities of Pseudomonas 

are attributed to their particular traits including, ACC-

deaminase activity, phytohormones production, phosphate 

solubilization ability, siderophores production, better root 

colonization and presence of pathogen degrading enzymes 

(Bakker et al., 2007; Stockwell and Stack, 2007; Zahir et 

al., 2009; Nadeem et al., 2010b). For example, the 

application of four PGPR strains including Pseudomonas 

sp., Citrobacter sp., Enterobacter sp. and Klebsiella sp. for 

enhancing the growth of ryegrass under salinity stress 

showed that Pseudomonas sp. performed comparatively 

better under high salinity level than other ones (Ji and 

Huang, 2008). The difference in growth promotion by these 

bacteria was attributed to difference in root colonization 

and ability to hydrolyze ACC.  

Pseudomonas strains also differ in their abilities to 

enhance plant growth owing to their particular traits. For 

example, the better performance of P. fluorescens over P. 

putida for promoting the growth and yield of pea under 

drought stress compared to P. putidawas due to its better 

root colonization (Arshad et al., 2008) whereas P. putida 

GR12-2 protected the canola plant from chilling injury 

(5oC) due to production of antifreeze protein that protected 

the bacteria from damage of extracellular ice formation 

(Sun et al., 1995). On the other hand, P. aeruginosa 

enhanced sorghum growth at elevated temperature level i.e. 

up to 50oC at both sterile and non sterile conditions (Ali et 

al., 2009) showing the presence of high molecular weight 

protein in the inoculated plants. However, this difference 

was not significant at ambient temperature. The 

enhancement in growth by Pseudomonas was also due to 

increase in the level of cell metabolites. Kurz et al. (2010), 

by using biochemical approaches, reported that P. Syringae 

produced different osmolytes which differentially 

contributed to water stress tolerance and interacted at the 

level of transcription.  

The ethylene production under stress environment 

negatively affects plant growth by root inhibition and 

causes certain physiological disorders like epinasty, 

abscission and senescence (Mattoo and Suttle, 1991; 

Nadeem et al., 2010b). This can be effectively controlled by 

the application of ACC-deaminase containing bacteria that 

degrade the immediate precursor of ethylene ACC, and 

therefore enhance the plant growth under such environment 

(Glick et al., 2007). The presence of ACC-deaminase 

enzyme has been reported in a number of Pseudomonas 

spp. (Saleem et al., 2007; Nadeem et al., 2010b). 

The nutrient availability can be increased under 

nutrient limiting environment by solubilizing phosphatase 

and the production of chelating substances like 

siderophores. Pseudomonas spp. are well known for their 

ability to produce siderophores (Ali and Vidhale, 2011). In 

iron limited environment, siderophores increase the 

availability of iron for plant (Powell et al., 1980; Crowley et 

al., 1991). Microbial siderophores are also helpful for 

reducing the impact of pathogens on plant growth by 

decreasing the iron availability (Arora et al., 2001; Saikia et 

al., 2005). Due to great affinity of siderophores for iron, 

Pseudomonas producing siderophores have competitive 

advantage on pathogenic organism for iron uptake.  

The production of exopolysaccharides by 

Pseudomonas spp. is another important characteristic that 

enables the plant to withstand stress environment. 

Exopolysaccharides producing bacteria increase plant 

resistance against stress (Bensalim et al., 1998) and 

increased production of exopolysaccharides has been 

reported by Pseudomonas spp. under desiccation (Roberson 

and Firestone, 1992). The exopolysaccharides protect the 

plant in saline environmenton one hand by decreasing the 

ion toxicity particularly sodium (Ashraf et al., 2004) and on 

the other hand alsoplays an important role to reduce 

negative impact of water stress on plant underdesiccation 

(Sandhya et al., 2009). Exopolysaccharides form an 

organomineral sheath around the cell that enhances micro 

aggregation which promotes aggregate stability (Alami et 

al. 2000). It has been reported that exopolysaccharides 

producing P. putida provide protection to sunflower 

seedlings against drought stress by biofilm formation 

(Sandhya et al., 2009). The inoculated seedlings showed 

improved soil aggregation and root adhering soil and higher 

relative water content in the leaves.  

Enzymes play very important role in plant growth and 

development. A number of plant enzymes become active in 

response to any stimulus. For example, under stress 

environment, reactive oxygen species are produced that are 

detrimental for normal plant functions (Mittler, 2002; 

Hajiboland and Joudmand, 2009). In response to these 

species, antioxidant enzyme systems operate and dilute the 

impact of these substances. Some of the important enzymes 

include ascorbate, peroxidases, catalases and reductases 

(Mittler, 2002; Abdel, 2011). It has been observed that 

Pseudomonas spp. also contribute significantly to enhance 

the activity of these antioxidant enzymes to dilute the 

impact of these deleterious species. The effectiveness of 

Pseudomonas spp. for promoting plant growth owing to 

enhancing the activities of these enzymes has also been 

reported (Fu et al., 2010; Jaleel et al., 2010). P. mendocina 

was used as a protectant against oxidative stress caused by 

drought due to its ability to enhance the activity of 
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antioxidant enzyme (Kohler et al., 2008). It has also been 

observed that plants inoculated with Pseudomonas showed 

significantly better growth compared to un-inoculated ones 

but the concentration of these enzymes was comparatively 

less in inoculated plants compared to control (Sandhya et 

al., 2010). They demonstrated that it was due to decrease in 

impact of stress by inoculation and therefore reactive 

oxygen species were produced at low concentration. Thus 

these studies showed that Pseudomonas inoculation 

protected the stressed plants in two ways, either by 

enhancing the activity of antioxidant enzymes and/ or by 

diluting the impact of stress so that reactive oxygen species 

are produced at low concentration.  

Similarly, the accumulation of compatible solutes 

under stress conditions is also common strategy adopted by 

the plant to maintain their growth under stress environment 

(Martino et al., 2003; Chen et al., 2007; Farouk, 2011). The 

PGPR like Pseudomonas sp. also contribute effectively for 

enhancing the ability of plant to accumulate compatible 

solutes so that the effect of stress can be reduced (Sandhya 

et al., 2010). It has been observed that inoculation with 

Pseudomonas sp. increased plant resistance against stress 

by enhancing its ability to accumulate proline compared to 

un-inoculated plants (Heidari et al., 2011). It has also been 

observed that mechanism of stress protection by PGPR may 

differ. As is evident from the work of Djavaheri et al. 

(2009), that induced systemic resistance against pathogen in 

Arabidopsis caused by P. fluorescens WCS374r was not 

regulated by iron-regulated metabolites Psb, Psm or SA. 

However, ISR mediated against TCV depended on 

production of both SA and Psb. This indicates that different 

elicitors of WCS374r trigger signal-transduction pathways 

that are differentially effective against pathogens. Similarly, 

Liddycoat et al. (2009) studied the effect of bacteria on 

asparagus (Asparagus officinalis L.) by using Pseudomonas 

sp. under drought stress. They found that inoculation helped 

the plant to tolerate the stress conditions and effect of 

inoculation was differed with respect to cultivar. 

Inoculation enhanced the growth of ‘Guelph Millennium’ 

cultivar under optimum conditions whereas Jersey Giant’ 

seedlings under drought stress.  

The growth promoting abilities of Pseudomonas under 

stress was also examined by application with other strains 

and also using different carrier materials. P. moraviensis 

was applied alone and in combination with Bacillus cereus 

to improve wheat growth under salt stress (Hassan and 

Bano, 2015). Ground maize straw and sugarcane husk were 

used as carriers. Co-inoculation of PGPR with both the 

carrier materials significantly decreased electrical 

conductivity and Na+ content of soil compared to un-

inoculated control.  

The role of PGPR for protecting the plant from 

pathogens is well established (Van Loon, 2007). P. and 

Bacillus spp. are well documented for their ability to protect 

the plant from pathogens. The cyanide production is a 

common characteristic of most of the Pseudomonas spp. 

(Ahmad et al., 2008). The cyanide producing bacteria 

caused negative impact on pathogens growth and it has 

been observed in several studies that cyanide producing 

bacteria significantly protected the plant from diseases 

(Saharan and Nehra, 2011). Another important aspect of 

Pseudomonas inoculation which attains major attention is 

the ability to induce systemic resistance in plant. This 

systemic resistance can be incorporated by different 

mechanisms like modifying cell wall structure, enhancing 

the activity of pathogenesis related proteins, better root 

colonization and synthesis of stress proteins (Van Peer and 

Schippers, 1992; Wei et al., 1996; Siddiqui et al., 2005). 

Paul and Nair (2008) found that P. fluorescens MSP-393, 

used as biocontrol agent against pathogen effectively 

colonized the plant roots in the presence of high 

concentration of salts. Similarly, prior to this, it had been 

observed that better root colonization of P. fluorescens 

A506 inhibited the growth of plant pathogen and caused 

reduction of disease (Lindow et al., 1996). Recently, 

Hernandez-Salmeron et al. (2016) reported the presence of 

genes in P. fluorescens UM270 involved in biological 

control. Prior to this, Hernandez-Leon et al. (2015) reported 

that this strain protected the plant from onset of disease by 

the production diffusible and volatile compounds.  

Certain PGPR strains have ability to tolerate and 

maintain their growth under contaminated soils stress 

conditions. Pseudomonas and Bacillus spp. are reported to 

tolerate heavy metals (Joseph et al., 2007). Cadmium 

resistant P. tolaasi and P. fluorescens enhanced the growth 

of Brassica napus under cadmium stress (Dell’Amico et al. 

2008). It was demonstrated that this growth enhancement 

was due to accumulated effect of growth promoting traits 

including production of indole acetic acid, siderophores and 

ACC deaminase. Similarly, Pseudomonas sp. enhanced root 

growth and tolerance of Lens esculenta against lead and 

arsenic stress as reported by Franco-Hernandez et al. 

(2010). They found that even in the presence of high 

concentration of arsenic that was toxic for L. esculenta the 

inoculation enhanced the root length and this response 

could be related to their ability to produce siderophores. 

However, they observed significant difference among 

bacterial strains for enhancing the growth of L. esculenta.  

In order to study the Pseudomonas ability to protect the 

plant from contaminants, different plant colonization 

methods (seed soaking, root soaking and leaf painting) was 

adopted to get significant results (Sun et al., 2015). An 

endophytic Pseudomonas sp. Ph6-gfp was used to protect 
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the plant from phenanthrene toxicity. Compared with the 

Ph6-gfp-free treatment, the accumulation of PHE in Ph6-

gfp-colonized plants was lower. Root soaking was most 

efficient colonization method for improving of 

phenanthrene removal in whole plant bodies by increasing 

the cell numbers of Ph6-gfp in plant roots. The application 

of Pseudomonas spp. with Ag-nano particles mitigated the 

negative impact of waste water on maize growth by 

enhancing the root area and root length (Khan and Bano, 

2016).  

Recent work of Zerrouk et al. (2016) showed that 

inoculation of maize with Pseudomonas fluorescens protect 

the plant from dual stress of salt and aluminum. Similarly, 

Tiwari et al. (2016) reported the Pseudomonas putida 

ability to protect the chickpea (Cicer arietinum L.) from 

drought stress. They showed that inoculated strain altered 

certain physical, physiological and biochemical parameters 

by causing positive impact on water status, membrane 

integrity, accumulation of osmoprotectants, antioxidative 

enzyme activities. The inoculation also modulated 

differential expression of at least 11 stress-responsive 

genes. They demonstrated that Pseudomonas inoculation 

not only improve the growth of desi chickpea but also 

enhanced the growth of drought sensitive kabuli cultivar 

that indicating its greater potential for enhancing 

agricultural yield economically important legume. 

Use of Pseudomonas spp. in environmental 
science 

It is necessary not only to improve crop yields and also 

to find out new energy resources to fulfill the food and 

energy requirements of overgrowing population. No doubt, 

the use of agrochemicals and synthetic plant growth 

regulators enhance the plant growth and crop production. 

However, environmental concerns related to these 

substances motivate the scientists to find out environment 

friendly approaches for sustainable agriculture. Among 

microbial populations, Pseudomonas attains special 

attention due to its environment friendly traits. The use of 

Pseudomonas spp. containing ACC-deaminase enzyme 

(biological inhibitor of ethylene) instead of chemical 

inhibitor aminoethoxyvinyleglycine (AVG) to reduce the 

stress-induced ethylene is an environment friendly 

approach. Similarly, the use of phosphate solubilizing 

bacteria plays important role in the availability of 

phosphorus, therefore reducing the use of chemical 

fertilizers and decreases the cost of production.  

In modern era of industrialization, the environmental 

problems are increasing day by day to an alarming 

situation. The waste products of industry and also the 

municipal waste materials are the major environmental 

hazards. These types of waste materials contain high 

concentration of heavy metals (Glick, 2003) that are 

injurious for living population. Similarly, petroleum 

hydrocarbons are the main source of energy and their 

transportation and consumption increases the soil and water 

contamination due to leakage (Rahman et al., 2002). The 

environmental hazards can be reduced, if not eliminated 

completely, by the use of effective microbial strains (Table 

3). The bacterial population in the rhizosphere is typically 

10- to 1000-fold greater than bulk soil. Such large 

population enables them to enhance plant stress tolerance 

and accelerated remediation of polluted soils. 

Phytoremediation is a promising and relatively cost 

effective strategy for removal of contaminants from the 

soil. The remediation efficiency of bacterial strains differs 

with respect to genera and metal toxicity. Deepthi et al. 

(2014) observed a variable metal tolerant ability of 

Pseudomonas and Rhizobium sp. The application of metal 

tolerant bacteria may be vital for detoxifying the 

contaminated soils (Glick et al., 2003). The success of 

phytoremediation depends upon significant interactions 

among soil, bacteria, heavy metal and plant (Hi et al., 

2013). Being a better root colonizer, Pseudomonas spp. are 

most dominant group of microorganisms that degrade 

complex organic and inorganic compounds/environmental 

pollutants including carcinogenic and mutagenic ones 

(Zhao and Wong, 2009; Haritash and Kaushik, 2009; Glick, 

2010). The degradation of certain organic and inorganic 

compounds is an important aspect of these strains 

(Adebusoye et al., 2007; Das and Chandran, 2011). 

Recently, Vojtkova et al. (2015) reported that P. monteili 

showed significant potential to degrade a number of organic 

pollutants including anthracene, fluorene, naphthalene and 

phenanthrene. 

The low solubility of hydrocarbons is a limiting factor 

for the degradation of these compounds by microbes. 

However, the production of biosurfactants by the bacteria 

increases their bioavailability and enhances their uptake 

(Barathi and Vasudevan, 2001). Biosurfactants are 

amphiphilic compounds and due to their structural and 

functional diversity, they are ableto partition at the oil/water 

interfaces and reduce the interfacial tension (Darvishi et al., 

2011). Microbial biosurfactants are gaining much 

importance because these are environment friendly due to 

biodegradablity, low irritancy and non toxic nature (Banat 

et al, 2000; Cameotra, and Makkar, 2004; Sivapathasekaran 

et al., 2010; Kiran et al., 2010; Satpute et al., 2010). Due to 

environmental concerns about chemical surfactants the 

biosurfactants are environmental compatible and can also 

work in extreme environmental conditions (Dastgheib et al., 

2008). As it is evident from the work of Flasz et al. (1998) 

who compared the microbial biosurfactants with a synthetic 
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surfactant to evaluate their toxicity and mutagenic 

properties. Chemical derived surfactant was found highly 

toxic and mutagenic whereas biosurfactant produced by P. 

aeruginosa was non toxic and non mutagenic. 

Pseudomonas spp. are also present hydrocarbon rich 

environment and produce many kinds of biosurfactants 

which have great potential for biotechnological and 

biomedical applications (Raaijmakers et al., 2006; Sinnaeve 

et al., 2009). Biosurfactants produced by Pseudomonas and 

Acinetobacter spp. enhance the bioavailability and 

degradation of pesticides and petroleum and polycyclic 

aromatic hydrocarbons (Singh et al., 2009; Sharma et al., 

2009; Zhao and Wong, 2009). Based on their chemical 

nature, different types of biosurfactants like 

lipopolysaccharides, glycolipids, lipopeptides and 

oligosaccharides have been reported to be produced by 

different bacteria (Banat et al., 2000, 2010; Franzetti et al., 

2010). Rhamnolipids biosurfactants are also helpful for 

reducing the impact of diseases as reported by Sharma et al. 

(2007). They reported the protection against damping off 

disease in chili and tomato by rhamnolipids producing 

Pseudomonas.The rhamnolipids biosurfactants are first 

identified from Pseudomonas sp. (Jarvis and Johnson, 

1949). Pseudomonas aeruginosa is well known due to its 

ability to produce biosurfactants and their biosurfactants 

production and biodegradation activity have been reported 

by many workers (Cameotra and Singh, 2008; Obahiagbon 

and Akhabue, 2009). Rhamnolipidic type biosurfactants 

enhance the biodegradation of crude oil (Rocha and Infante, 

1997) and this type of tensio-active glycolipids are 

produced by P. aeruginosa which have the ability to 

degrade wide variety of oil components (Muthusamy et al., 

2008). Although the rhamnolipids main biosurfactants 

produced by P. aeruginosa by various workers (Rahmanet 

al., 2002, 2010; Cameotra and Singh, 2009), the production 

of lipopeptide biosurfactant from P. aeruginosa has also 

been reported (Thavasi et al., 2011a). Recently, Rikalovic et 

al. (2015) critically reviewed the production of rhamnolipid 

Table 3: Role of Pseudomonas spp. in environmental science 

Specie name Mechanism used Response Reference 

P. putida W619-TCE Lowered evapotranspiration 

of trichloroethylene (TCE).  

Promoted plant growth, reduced TCE 

phytotoxicity and increased shoot biomass 

Weyens et al. 

(2010) 

P. aeruginosa Biosurfactants production Biosurfactants produced bacteria showed a 

good stability above pH of 5 and at higher 

salinity 

Xia et al. (2011) 

P. fluorescens strain 

P13 

Production of catechol 2, 3-

dioxygenase 

Enhanced corn growth and reduce phenol 

concentration in contaminated environment 

Yang et al. 

(2011) 

P. extremaustralis Polyhydroxyalkanoates 

(PHAs) production, 

biosurfactant production 

Inoculation enhanced hydrocarbon 

remediation under extreme environment 

Tribelli et al. 

(2012) 

P. putida KT2440 Enzymes production and 

expression of genes involved 

in the oxidative stress and 

higher colonization 

Complete mineralization of [14C] 

naphthalene, the rate of mineralization was at 

least 2-fold higher in the rhizosphere than in 

bulk soil 

Fernandez et al. 

(2012) 

P. aeruginosa Biosurfactants production Bacterization was effective in crude oil 

degradation under contaminated environment 

Zhang et al. 

(2012) 

P. aeruginosa AB11, 

P. fluorescens AB56, 

P. alcaligenes 

AB44, P. putida 

AB58 and AB67 

Production of surfactants Enhanced biodegradation of petroleum tar, 

also produce intermediates 

Tanti and 

Buragohain 

(2013) 

P. putida 

AK5 

Degradation via salicylate-

gentisate pathway 

Enhanced the degradation of naphthalene Izmalkova et al. 

(2013) 

Pseudomonas sp. 

strain B2 

Degradation was 

accompanied by release of 

chloride ion 

Degraded CF to clodinafop acid and 4-(4-

Chloro-2-fluoro-phenoxy)- phenol within 9 h 

Singh (2013) 

Pseudomonas sp. 

strain GE-1 

Co-precipitation and 

adsorption 

Enhanced the removal of arsenic through 

arsenic immobilization by induction of 

ferrihydrite 

Xiu et al. (2015) 
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biosurfactant from P. aeruginosa and their application in 

environmental science. They demonstrated that in spite of 

certain drawbacks, P. aeruginosa are the most promising 

candidates for rhamnolipid biosurfactant production. 

According to their view, there is great scope for the 

application of rhamnolipid biosurfactant in the field of 

bioremediation, biodegradation of hydrocarbons and 

removal of heavy metals. The effectiveness of rhamnolipid 

biosurfactant has already been documented due to their 

remarkable tensio-active and emulsifying properties 

(Soberon-Chavez et al. 2005; Liu et al. 2014). Similarly, 

glycolipid type biosurfactants produced by P. aeruginosa 

showed great potential to degrade petroleum hydrocarbons 

including eicosane, pristane and fluoranthene (Sharma et 

al., 2015). The production of biosurfactants is variable 

among bacterial spp. andalso depends upon the medium. It 

is evident from the work of Priya and Usharani (2009) that 

among four oils i.e. vegetable oil, kerosene, petrol and 

diesel, the production of biosurfactants was more in case of 

diesel. P. aeruginosa had higher biosurfactants activity than 

B. subtilis. 

Maier (2003) reported that the degradation 

effectiveness was affected by the strain potential and this 

potential of bacterial strain to degrade hydrocarbon was 

linked with their ability to produce biosurfactants. It has 

been reported that proper mineral nutrition is necessary for 

microbial biosurfactants production and limited use of 

bacterial biosurfactants is due to expensive substrates and 

limited product concentrations (Syldatk and Hausmann, 

2010). It was observed that providing mineral nutrition to 

the bacteria enhances the process of biosurfactants 

production (Mukherjee et al., 2008; Manif et al., 2012) that 

accelerates the process of degradation. However, it was also 

reported by Maki et al. (2003) that application of mineral 

nutrition only stimulated the initial process of 

biosurfactants production and final degradation efficiencies 

were independent of fertilizers (Maki et al. 2003). The work 

of Thavasi et al. (2011b) also supported this argument. 

They investigated the effects of biosurfactants in the 

presence and absence of fertilizer on biodegradation of 

crude oil by using three biosurfactants producing bacterial 

strains; B. megaterium, Corynebacterium kutscheri and P. 

aeruginosa. They found that the P. aeruginosa caused 

maximum degradation compared to other strains. Although 

fertilizer application enhanced the degradation process, 

biosurfactants alone were also capable of promoting 

biodegradation to a large extent. It indicates that efficacy is 

related to nature of biosurfactant produced by the bacteria. 

Such biosurfactants would be useful for minimizing the risk 

of fertilizer which are generally washed away with surface 

agitation and are mixed in the aquatic environment. 

Due to cost effectiveness and environment friendly 

approach, phytoremediation is one of the emerging 

technologies over conventional methods (Chehregani et al., 

2009; Kotrba et al., 2009). For effective phytoremediation, 

the bioavailability of metals, better root development and 

tolerance of plant against metal is pre-requisite (Pilon-

Smits, 2005). Although chemical substances like ethylene 

diamine tetracetic acid (EDTA) and hydroxyethyl-

ethylenediamine-triacetic acid (HEDTA)are very effective 

chemical enhancers used to increase the availability of 

heavy metals(Huang and Cunningham, 1996;Vassil et al., 

1998; Chen and Cutright, 2001; Chen et al., 2003;Turan and 

Esringu, 2007), the growth of metal accumulating plants is 

also affected if the concentration of available metals 

increases and thereby reducing their biomass and efficiency 

of phytoremediation (Li et al., 2007). Sinha and Gupta 

(2005) also reported the growth inhibition by elevated 

levels of heavy metals. Application of chemical chelating 

agents is not only harmful for environment but it can also 

have phototoxic effect that inhibit the plant growth and 

therefore lowers the efficiency of phytoextraction (McGrath 

and Zhao, 2003; Ma et al., 2009). Certain bacterial strains 

increase the bioavailability of metals and therefore enhance 

their removal (Ibrahim et al., 2009). Therefore, the use of 

bacteria for enhancing biomass and metal uptake of metal 

accumulating plants could be very effective (Sheng and 

Xia, 2006; Rajkumar et al., 2009).  

The application of Pseudomonas spp. protect the plant 

from negative impact of heavy metals (Arshad et al., 2008; 

Dell' Amico et al., 2008) and also play an important role for 

degradation and phytoextraction of these metals (Jing et al., 

2007; Yancheshmeh et al., 2011; Baharlouei et al., 2011). 

Not only the rhizospheric bacteria but also endophytic 

Pseudomonas spp. have been reported to enhance the 

growth of Brassica napus and accumulation of copper 

(Zhang et al., 2011). In addition to providing protection 

against pathogens as mentioned in the previous sections, the 

siderophores producing strains also enhanced metal 

accumulation in plant (Idris et al., 2004) and could be 

useful for phytoremediation. Similarly, exopolysaccharides 

producing P. stutzeri showed significant potential in the 

treatment of heavy metals-contaminated water (Maalej et al. 

2015). They reported that exopolysaccharides produced by 

the strain showed metal adsorption capacity in the order of 

Pb >> Co > Fe > Cu >> Cd. Recently, Khan and Bano 

(2016) reported that the application of Pseudomonas sp. 

with Ag-nano particles enhanced the bioremediation 

potential of the strain for Pb, Cd, and Ni. According to their 

view municipal waste water can be used effectively by 

treating it with bacteria and Ag-nano particles for 

enhancing bioremediation of heavy metals.   
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Pseudomonas spp. may also be useful for reducing 

the use of herbicides to inhibit weeds growth. The 

excessive use of chemical herbicides causes negative 

impact on human and environment and also results in the 

development of herbicide resistant to weeds (Heap, 

1997). Although there are certain reports showing the 

effectiveness of Pseudomonas strains for inhibiting the 

growth of weeds (Tranel et al., 1993; Gealy et al., 1996; 

Kremer, 2006; Saharan and Nehra, 2011), might be due 

to the production of phototoxins (Nehl et al., 

1997).There are also some perceptions that these weed 

growth inhibiting strains could also be harmful for 

valuable plants. The work of Mejri et al. (2010) negated 

this opinion by observing the specificity of Pseudomonas 

against particular weed. They evaluated the growth 

inhibiting ability of P. trivialis against great brome 

(Bromus diandrus Roth.) weed grown alone and together 

with durum wheat (Triticum durum Desf.). They found 

that P. trivialis did not affect the growth of durum wheat. 

However, it suppressed the growth of great brome by 

affecting its root architecture. They demonstrated that 

the production of indole acetic acid by P. trivialis could 

be the cause of weed growth suppression and durum 

wheat growth promotion which also indicated the 

specificity of this hormone. In earlier study, Sarwar and 

Kremer (1995) also observed the growth inhibition of 

field bindweed (Convolvulus arvensis L.) by indole 

acetic acid producing Enterobacter taylorae.  

Role in biotechnology 

In recent decades, significant advances have been 

made in agriculture sector by developing more 

productive as well as stress resistance crop varieties. One 

of these developments has been the generation of 

transgenic plants which have the ability to cope with 

stress environment. The plant growth promotion 

observed in response to inoculation with suitable 

bacterial strains provoked scientists to develop 

transgenic plants with the expression of gene of interest. 

Being a well established growth promoting traits 

Pseudomonas spp. also considered as a suitable 

candidate for biotechnological research. To eliminate the 

negative impact of stressed induced ethylene Klee et al. 

(1991) developed tomato transgenic plants by insertion 

of genes responsible for ACC-deaminase activity, 

isolated from Pseudomonas sp. 6G5. They observed 

reduced ethylene concentration in transgenic plants. 

Transgenic tomato lines with reduced ethylene 

concentration were also prepared by obtaining gene from 

P. chlororaphis (Reed et al., 1995). Similarly, expression 

of a P. aeruginosa citrate synthase gene in tobacco 

(Nicotiana tabacum) improved Al tolerance of the 

tobacco plant (de la Fuente et al. 1997). These studies 

show that in addition to inoculation with Pseudomonas 

spp. the transfer of specific gene to construct transgenic 

plant could be useful for protecting the plants from stress 

environment.  

Nitrous oxide is a green house gas and there is a need 

of effective strategy for mitigation of this gas. The 

enzyme nitrous oxide reductase that catalyzes the final 

step of denitrification is naturally present in bacteria. Wan 

et al. (2012) demonstrated that bacterial nitrous oxide 

reductase from P. stutzeri expressed in plants can convert 

nitrous oxide into inert nitrogen. They demonstrated that 

incorporation of such bacterial gene in to crops may be 

useful for reducing the atmospheric concentration of 

nitrous oxide.  

The above discussion indicates that Pseudomonas 

spp. are equally effective for enhancing the growth of 

plant under normal and stress conditions as well as 

protecting the environment from harmful impact of 

hazardous substances. It is evident from above 

discussion that certain bacterial traitsare also very useful 

fromenvironment point of view and can be used 

effectively in environmental science. Such strains can be 

used as inoculums and/or gene of interest can be 

transferred to construct transgenic plants.  

Co inoculation of Pseudomonas with other 
microbes 

The effectiveness of microbial inoculation for 

enhancing plant growth and combating environmental 

problems is well documented. However, it has also been 

seen in certain cases thatsingle inoculationwas not effective 

or was less effective for that particularpurpose (Lucy et al., 

2004; Akhtar and Siddiqui, 2009). This might be due to the 

environmentalfactorsthat limit the survival of that strain in 

soil and/or inability of strain to compete with indigenous 

population. Similarly, the results obtained in laboratory are 

not so effective in green house or field conditions (Smyth et 

al., 2011). This limitation inspired the scientist to use 

consortium of strains so that maximum benefit can be 

obtained from this naturally occurringpopulation. 

For better results, the combined application of PGPR 

could be effective under different conditions. For 

example, the use of Pseudomonas spp. with Rhizobium 

to enhance the growth of legumes under normal as well 

as stress conditions was very useful (Sindhu et al., 2002; 

Egamberdieva et al., 2010; Stajkovic et al., 2011).  Some 

selected examples of the impact of co-inoculation has 

been presented in Table 4. 

The  tripartite  association  composed  of  legume plant, 

rhizobia   and   Pseudomonas   spp.   has   been  reported  to  
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Table 4: Interactive effect of Pseudomonas spp. with beneficial microorganism for improving growth and yield of crops 

Interactive 

microbe 

Pseudomonas 

spp. 

Test crop / 

Experimental 

conditions 

Effect on crop References 

Plant Growth Promoting Bacteria (PGPB) 

B. 

caryophylli 

P. fluorescens Wheat / pot and 

field trial 

Increased root-shoot elongation, biomass, and 

yield 

Shaharoona et 

al. (2007) 

Bacillus OSU-

142 and Bacillus 

M-3 

Pseudomonas 

sp. BA-8 

Strawberry / 

field trial 

Increased fruit weight, yield and total reducing 

sugar contents 

Pırlak L and 

Kose M 

(2009)  

A. brasilense P. fluorescens Wheat / field 

trial 

Increased aerial biomass, root biomass, plant 

height and grain yield 

Naiman et al. 

(2009) 

R. 

leguminosarum-

PR1 

Pseudomonas 

sp. strains 

(NARs1, 

PGERs17) 

Lentil / 

greenhouse 

conditions 

Increased nodulation, leghaemoglobin content, 

physiologically available iron, total iron, 

chlorophyll content, and NP uptake 

Mishra et al. 

(2011) 

Bacillus sp. M7c Pseudomonas 

sp. FM7d 

Alfalfa / field Increased root-shoot dry weight, length, and 

surface area of roots 

Guinazu et al. 

(2010) 

A. brasilense P. fluorescens Marigold / pot Shoot fresh weight was significantly higher, 

total phenolic content was 2-fold higher 

compared to control 

Cappellari et 

al. (2013) 

R. galegae bv. 

orientalis 

HAMBI540  

P. trivialis 

3Re27 

Fodder galega / 

greenhouse 

Increased shoot-root dry matter, nodule number, 

biomass, and nitrogen content 

Egamberdieva 

et al. (2010) 

S. meliloti RMP1  

 

P. aeruginosa 

GRC2 

Brassica juncea 

Field Trials 

Bacterization increased biomass and yield  Maheshwari 

et al. (2010) 

R. 

leguminosarum 

P. jessenii, P. 

fragi and 

Serratia 

fonticola 

Lentil / Pot and 

field 

Increased number of pods per plant, number of 

nodules, dry nodule weight, grain yield, and 

straw yield  

Zahir et al. 

(2011) 

Mesorhizobium 

sp. 

Pseudomonas 

sp.  

Chickpea/Field 

trial 

 

Co-inoculation of IAA producing Pseudomonas 

significantly increase plant dry weight and 

nodulation. However, higher concentration of 

IAA reduced growth 

Malik and 

Sindhu (2011) 

Bacillus OSU-

142 and Bacillus 

M-3 

Pseudomonas 

BA-8 

Strawberry/Fiel

d experiments 

Inoculation alone or in combination significantly 

increased fruit yield, plant growth and leaf P and 

Zn contents 

Esitken et al. 

(2010 

Acinetobacter sp. 

RG30  

P. 

putida GN04 

Green house 

trial 

Enhanced maize growth and chlorophyll content 

and protect the plant from copper toxicity 

Rojas-Tapias 

et al. (2014) 

Rhizobium pisi  Pseudomonas 

monteilii  

Phaseolus 

vulgaris L 

Increased the nodulation, growth parameters and 

yield. The impact on genotype BAT-477 was 

more than DOR-364. 

Sanchez et al. 

(2014) 

Rhizobium spp. Pseudomonas 

sp. 

Vicia 

faba.L. /Vineya

rd trial 

Enhanced plant growth under copper 

contaminated soil 

Fantassi et al. 

(2015) 

Arbuscular Mycorrhiza Fungi (AMF) 

P. indica P. striata Chickpea/ pot 

experiment 

Synergistic effect on population buildup, plant 

dry biomass  

Meena et al. 

(2010) 

G. mosseae and 

G. intraradices 

P. fluorescens 

SBW25 

Winter wheat 

/ greenhouse 

trial 

Increased plant growth and dry biomass, and 

reduced pathogens attack 

Jaderlund et 

al. (2008) 
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increase root and shoot weight, plant vigor, nitrogen (N) 

fixation and grain yield in various legumes (Bolton et al., 

1990; Dashti et al., 1998; Sindhu et al., 1999). Even 

enhancement of growth in non legumes was also observed 

by co-inoculation. The co-inoculation effect of 

Pseudomonas and Rhizobium on maize under salinity stress 

conditions decreased the electrolyte leakage, increased 

proline accumulation and maintained the water content of 

leaves with selective uptake of K ion (Bano and Fatima, 

2009). They observed that under unstressed conditions 

Rhizobium was more effective than Pseudomonas but under 

stress, Pseudomonas stimulated the plant growth. 

According to their view the growth promoting effect of 

Pseudomonas was due to more phosphorus accumulation 

and greater membrane stability that reduced the electrolyte 

leakage. 

As it was mentioned earlier, a number of Pseudomonas 

spp. containing ACC-deaminase enzyme could be helpful 

for reducing the ethylene concentration that caused negative 

impact on root growth and also on nodulation in legumes 

under stress environment. The co-inoculation can also 

reduce this impact of stress as is evident from the work of 

Ahmad et al. (2011) who observed that co-inoculation of 

Pseudomonas and Rhizobium phaseoli enhanced the growth 

and nodulation of mungbean under salinity stress 

conditions. They observed that co-inoculation of 

Pseudomonas spp. with rhizobium reduced the negative 

impact of salinity. They demonstrated that this growth 

enhancement was due to suppression of stress-induced 

ethylene that was injurious for proper nodulation. Similarly, 

co-inoculation of Mesorhizobium sp. with IAA producing 

Pseudomonas increased the nodule number and nodule 

biomass of chickpea (Cicer arietinum). The plant dry 

weight was significantly higher in case of co-inoculation 

compared to control and where the Mesorhizobium was 

applied alone (Malik and Sindhu, 2011). They also 

observed that inoculation of Pseudomonas inhibited the 

root growth at initial stages. However, after 10 days, root 

and shoot growth increased. They demonstrated that this 

initial inhibition might be due to the production of high 

T. aharzianum 

T22 and T. 

viride S17a) 

P. fluorescens 

CHA0 

Onion and 

carrot / 

glasshouse and 

field trials 

Improved seedling emergence and yield of 

crops 

Bennett et al. 

(2009) 

P. agglomerans 

050309 and 

Mycobacterium 

sp. 

P. fluorescens 

PsIA12 

Wheat / pot trial Increased root and shoot growth, higher N, P, 

and K contents of plant 

Egamberdiyeva 

and Hoflich 

(2003) 

AMF and 

Azotobacter 

chroococcum 

(Ac)  

. 

P. fluorescens 

(Pf) 

Sesamum/ pot 

experiment 

Enhanced root-shoot length, number of 

capsules, biomass and phosphorus uptake 

Sabannavar 

and Lakshman 

(2011) 

A. vaga BAM-

77 

Pseudomonas 

fluorescens 

BAM-4, 

Mung bean / pot 

trials 

Increased root-shoot length, dry biomass, leaf 

area and photosynthetic yield 

Jha et al. 

(2012) 

G. fasciculatum 

and G. 

aggregatum 

Pseudomonas 

spp. 

Sorghum / pot 

experiment 

Increased plant biomass, leaf area, total 

chlorophyll and mycorrhizal infection 

Kumar et al. 

(2012) 

Arbuscular 

mycorrhizal 

fungi  

P. jessenii, 

R62, P. 

synxantha, R81 

Rice, wheat and 

black gram / 

field 

Inoculation improved grain yield, mineral 

nutrient concentration of tested crops. Effect 

was more on wheat. Also improved soil 

enzymatic activites 

Mader et al. 

(2011) 

G. mosseae P. putida 

(HM590706) 

Guava / 

glasshouse 

Higher leaf, stem, shoot, and root dry masses, 

total biomass, and total leaf area 

Panneerselvam 

et al. (2012) 

G. fasciculatum P. monteilii Coleus 

forskohlii / field 

Improved AM root colonization, higher tuber 

yields and improved tuber contents of 

inoculated plants 

Singh et al. 

(2013) 

Arbuscular 

mycorrhizal 

fungi 

Pseudomonas 

spp. 

Strawberry/field  Co-inoculation increased flowering, number of 

fruit, fruit size and quality under conditions of 

reduced fertilization 

Bona et al. 

(2015) 

 



Pseudomonas spp. for Sustainable Agriculture and Environment 

 

126 

Soil Environ. 35(2): 106-145, 2016 

IAA that caused negative impact on root growth. It is also 

evident from earlier work that high IAA producing PGPR 

inhibited the root growth (Xie et al., 1996) rather than 

promoting it.  

The co-inoculation of Pseudomonas also proved 

helpful for suppressing plant disease. Recent work of 

Lachisa and Dabassa (2016) showed that application of 

Pseudomonas with Bacillus and composted manure 

efficiently reduced the onset of Fusarium wilt disease of 

tomato. They observed that impact of Pseudomonas was 

better compared to Bacillus and more efficient results were 

obtained when both strains were applied with composted 

manures. Similarly, Mani et al. (2016) found that co-

inoculation of P. putida with Thiobacillus thiooxidans 

enhanced the phytoremediation ability of Gladiolus 

grandiflorus L in the presence of vermicompost and 

elemental sulpher. Such studies show that efficacy of 

Pseudomonas can be enhanced by co-inoculation with 

suitable strain and by applying suitable amendment.   

For getting effective results, it is important to use 

compatible strains. Such compatibility could be very 

effective for attaining desire results. The incompatible 

combination could be result in poor performance. For 

example, phosphate solubilizing Pseudomonas was co-

inoculated with Rhizobium to evaluate their effect on alfalfa 

and soybean (Rosas et al., 2006). For inoculating alfalfa, P. 

putida was co-inoculated with Sinorhizobium meliloti and 

for soybean, it was co-inoculated with Bradyrhizobium 

japonicum. It was observed that co-inoculation effect was 

more significant in case of soybean than alfalfa. It might be 

due to the incompatibility of Bradyrhizobium japonicum 

with P. putida. 

The co-inoculation of Pseudomonas with arbuscular-

mycorrhizal (AM) fungi is also effective for promoting 

plant growth. The work of Ortiz et al. (2015) showed that 

co-inocualtion of AM fungus with P. putida and/or B. 

thuringiensis induced drought tolerance in Trifolium 

repens. They reported that synergistic or additive 

mechanisms are involved in this stress tolrance. The co-

inoculation maintained water status and plant nutrition. 

Also improved osmotic adjustment and regulated the 

antioxidants systems. The combine application of P. 

aeruginosa and Trichoderma harzianum in soil amendment 

with Vernonia anthelmintica seed’s powder induce 

systemtic resistance against Rhizoctonia solani and 

Fusarium oxysporum in okra (Shafique et al., 2015). They 

observed that mycorrhizal spores were more arround the 

plant root treated with P. aeruginosa alone or in 

combination. Also more phosphorus contents were 

observed in treated plants. Prior to this Bokhari et al. (2014) 

also reported the improved phosphorus contents and 

mycorrhizal spores around the root of mung bean 

inoculated with fluorescent Pseudomonas. 

Limitations and alternate use 

In spite of a number of studies reviewed and discussed 

in the previous sections, indicating better performance of 

Pseudomonas spp., there are certain reservations and/or 

limitations regarding the use of Pseudomonas spp. on 

commercial basis. For examples, IAA producing bacterial 

strains is effective for enhancing the root and shoot growth 

of plants but at the same time the inhibition of growth due 

to IAA has also been reported (Xie et al., 1996). However, 

this root inhibition was generally observed at high 

concentration of IAA (Arshad and Frankenberger, 1992; 

Xie et al., 1996). Therefore, the strain specificity should be 

kept in mind for obtaining better results. 

Pseudomonas aeruginosa is an effective strain for 

degrading hydrocarbon material and is used extensively in 

environmental science. It is also an opportunistic pathogen 

that causes certain infections like bloodstream, skin and soft 

infections, otitis exterma and pneumonias (Driscoll et al., 

2007). Such infections may lead to high rate of mortality in 

immunocompromised hosts and also in patients with cystic 

fibrosis or severe burns (Markou and Apidianakis, 2013). 

Therefore, care should be taken in its use. 

The release of allelochemicals like cyanide, phenolic 

acids, phenazine-1-carboxylic acid and phytotoxins 

suppress germination of seeds and plant growth (Suslow 

and Schroth, 1982; Bakker and Schippers, 1987; Nehl et al., 

1997; Karen et al., 2001). Cyanide production is a dominant 

characteristic of many of the Pseudomonas spp. Although 

the cyanide producing bacteria are known for their 

inhibitory effect on pathogens and play important role in 

inducing disease resistance in plants (Saharan and Nehra, 

2011; Parikh and Jha (2012), HCN also causes an inhibitory 

effect on plant growth. Kremer and Souissi (2001) showed 

that cyanide production by Pseudomonas sp. caused the 

growth inhibition of lettuce and barnyard grass.  They 

reported that cyanide production by the bacteria was a 

potential and environmentally compatible mechanism for 

biological control of weeds (Heydari et al., 2008). It has 

been observed that application of P. fluorescens suppressed 

the emergence of green foxtail (Setaria viridis L.) up to 

90% (Daigle et al. 2002). Cyanide producing P. 

entomophila can be used as biocontrol agent for reducing 

pathogenecity caused by other bacteria (Ryall et al., 2009). 

Cyanide producing Pseudomonas spp. proved useful for 

reducing the fungal growth Macrophomina phaseolina 

(Tassi.) Goid and can be used as biocontrol agent (Reetha et 

al. 2014). Such strains can be used effectively as 

bioherbicides for inhibiting weed growth which are silent 
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robbers of plant nutrients and soil moisture (Kamei et al., 

2014).  

Future prospects 

There are number of reports available, some of these 

also discussed in this article, that indicating the 

effectiveness of PGPR for enhancing growth and 

development of plant. There are still lack of evidences that 

show the consistent performance of these microbes 

particularly under field conditions. This mightbe due to low 

quality of inoculum (Brockwell and Bottomley, 1995) and 

inability of bacteria to compete with the indigenous 

population under adverse environmental conditions 

(Catroux et al., 2001). As reported by Cattelan et al. (1999), 

for better performance, the PGPR strains must be 

rhizosphere competent that could be able to survive and 

colonize. Therefore, the most significant factor that affects 

the effectiveness of inoculating strain is its ability to 

compete with the indigenous population for limiting 

resources as well as the compatibility between the 

rhizodeposition of compounds by the plant host and the 

ability of the inoculated bacteria to utilize them (Strigul and 

Kravchenko, 2006).  

In certain cases, the result obtained in the lab cannot be 

reproduced in the field (Zhender et al., 1999; Smyth et al., 

2011). It might be due to the reasons that the inoculating 

strains could not compete with the indigenous population. 

According to Mitter et al. (2013) this inconsistency might 

be due to selection of inappropriate strain, inability of strain 

to produce particular secondary metabolites and specificity 

of strain to colonize roots of some specific plant. For 

effective inoculation it is necessary that inoculating 

microbe could be able to tolerate environmental stresses so 

that it may play a role in plant growth promotion. The 

development of inoculum for soil, subjected to several 

environmental stresses needs guarantee that strains will 

remain effective under such adverse conditions. In cases 

where single inoculation is not so effective multiple 

inoculation might be useful for enhancing plant growth 

(Liddycoat and Wolyn, 2009). Rajasekar and Elango (2011) 

observed that multi-strains inoculum was more effective 

compared to single strain inoculation.  

The method of inoculation is also might be one of the 

reasons of inconsistent results. Different inoculation 

techniques include peat based inoculants, liquid inoculation 

and seed coating are used to introduce the candidate 

microbes in to the soil. The carrier material used to prepare 

a good formulation play a key role to protect the microbes 

from unfavorable conditions during storage, transport and 

their stay in the soil. John et al. (2011) critically review the 

problems related the low viability of microorganisms 

during storage and field application. They reported that lack 

of knowledge regarding the best carrier in conventional 

formulations (solid and liquid) is one of the reasons of poor 

performance of microbial community under natural 

conditions. According to their view, microencapsulation is 

an advanced technology that can be used effectively to 

overcome these drawbacks. Correa et al. (2015) reported 

that coconut fiber is a carrier of superior performance in 

maintaining shelf life of Pseudomonas strains. They 

concluded that densities of viable cells in coconut fiber 

decline significantly during 224 days. Recently, Stephan et 

al. (2016) while investigating the practicability of freeze-

drying to formulate and stabilize Pseudomonads reported 

that Pseudomonads can be freeze-dried without loss of 

viability. They demonstrated that selection of suitable cryo-

protective agents not only enhancing its viability, storability 

but also improve efficacy of Pseudomonads to protect the 

plant from biotic stress.  

It has been observed that plant genotypic background 

and bacterial traits affect the interaction between plant and 

rhizobacteria containing ACC-deaminase (Belimov et al., 

2001). Also the ability of bacteria to utilize ACC 

accompanied by other properties, like indole acetic acid and 

ethylene production probably could affect their interaction 

with plants. Therefore, these aspects should also be kept in 

mind while studying the effectiveness of such strains. In 

certain cases, it has been seen that certain growth promoting 

traits may interact with each other and have influence on 

plant growth. For example, in one of our study (submitted for 

publication) bacterial strains having both ACC-deaminase 

and IAA activity behaved differently. The strain having high 

ACC-deaminase activity and low IAA and/or high ACC-

deaminase and high IAA performed better compared to a 

strain having high IAA and low ACC-deaminase. Therefore, 

such aspects need further research so that most effective 

strains or combinations of strains can be selected. 

Other beneficial aspects of bacterial inoculation also 

need special attention. For example, the addition of ice-

nucleating bacteria to agriculture has potential benefits of 

protecting crops from frosts dropping below freezing, 

which might contribute to a solution of the world-wide 

problem of starvation and chronic hunger. The application 

of these bacteria could be an effective technology for 

enhancing plant growth at low temperature. Similarly, 

cyanide producing bacteria can be used effectively for 

disease suppression. Certain Pseudomonas strains produce 

allelochemicals that can be used as bioherbicides to 

minimize the use of chemicals and therefore eliminate 

environmental hazards.  

Conclusion 

Increasing crop production in limited resources for 

overgrowing population is a challenge for scientists and 
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presence of unfavorable environment further increases the 

intensity of this challenge. The use of chemical inputs like 

fertilizers, insecticides and herbicides although enable us to 

achieve this goal. However, the environmental concerns 

related with these, decrease their effectiveness. The use of 

naturally occurring microbial community can provide 

opportunities to solve this problem. Among this, strains 

belong to Pseudomonas group attains special attention due 

to its tremendous performance for enhancing plant growth 

and development as well as protecting and solving 

environment related problems.   

The plant growth promoting abilities of Pseudomonas 

spp. under normal as well as stress conditions validate their 

role in sustainable agriculture. The intensity of biotic and 

abiotic stresses can be reduced by inoculating the seed or 

seedling with suitable strains of Pseudomonas. The 

degradation of hazardous compounds both organic and 

inorganic further increases their importance for protecting 

our environment. The effective performance of 

Pseudomonas in phytoextraction and remediation further 

validates their positive role in environmental protection. 

The Pseudomonas trait that caused negative impact in one 

condition could be effective against some particular aspect 

in other environment. This also indicates the specificity of 

such traits for some particular purpose. Overall, 

Pseudomonas spp. are an environment friendly microbial 

population that can be used to tackle grand challenge and 

management options if used wisely. It is hoped that 

Pseudomonas spp. will be major inoculant in future for 

sustainable agriculture and environment.  
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